40 research outputs found
Small-x QCD studies with CMS at the LHC
The capabilities of the CMS experiment to study the low-x parton structure
and QCD evolution in the proton and the nucleus at LHC energies are presented
through four different measurements, to be carried out in Pb-Pb at sqrt(s_NN) =
5.5 TeV: (i) the charged hadron rapidity density and (ii) the
ultraperipheral (photo)production of Upsilon; and in p-p at sqrt(s) = 14 TeV:
(iii) inclusive forward jets and (iv) Mueller-Navelet dijets (separated by
8).Comment: Quark Matter'06 Proceedings. To appear in J.Phys.
The impact of XENON100 and the LHC on Supersymmetric Dark Matter
The effect of 2010 and 2011 LHC data are discussed in connection to the
potential for the direct detection of supersymmetric dark matter. The impact of
the recent XENON100 results are contrasted to these predictions.Comment: 14 pages, 23 figures, To be published in the Proceedings of the 7th
DSU Conference, Beijing Chin
Commissioning of the CMS High Level Trigger
The CMS experiment will collect data from the proton-proton collisions
delivered by the Large Hadron Collider (LHC) at a centre-of-mass energy up to
14 TeV. The CMS trigger system is designed to cope with unprecedented
luminosities and LHC bunch-crossing rates up to 40 MHz. The unique CMS trigger
architecture only employs two trigger levels. The Level-1 trigger is
implemented using custom electronics, while the High Level Trigger (HLT) is
based on software algorithms running on a large cluster of commercial
processors, the Event Filter Farm. We present the major functionalities of the
CMS High Level Trigger system as of the starting of LHC beams operations in
September 2008. The validation of the HLT system in the online environment with
Monte Carlo simulated data and its commissioning during cosmic rays data taking
campaigns are discussed in detail. We conclude with the description of the HLT
operations with the first circulating LHC beams before the incident occurred
the 19th September 2008
A limiting velocity for quarkonium propagation in a strongly coupled plasma via AdS/CFT
We study the dispersion relations of mesons in a particular hot strongly
coupled supersymmetric gauge theory plasma. We find that at large momentum k
the dispersion relations become omega = v_0 k + a + b/k + ..., where the
limiting velocity v_0 is the same for mesons with any quantum numbers and
depends only on the ratio of the temperature to the quark mass T/m_q. We
compute a and b in terms of the meson quantum numbers and T/m_q. The limiting
meson velocity v_0 becomes much smaller than the speed of light at temperatures
below but close to T_diss, the temperature above which no meson bound states at
rest in the plasma are found. From our result for v_0, we find that the
temperature above which no meson bound states with velocity v exist is
T_diss(v) \simeq (1-v^2)^(1/4) T_diss, up to few percent corrections.We thus
confirm by direct calculation of meson dispersion relations a result inferred
indirectly in previous work via analysis of the screening length between a
static quark and antiquark in a moving plasma. Although we do not do our
calculations in QCD, we argue that the qualitative features of the dispersion
relation we compute, including in particular the relation between dissociation
temperature and meson velocity, may apply to bottomonium and charmonium mesons
propagating in the strongly coupled plasma of QCD. We discuss how our results
can contribute to understanding quarkonium physics in heavy ion collisions.Comment: 57 pages, 12 figures; references adde
Physics at the LHC: a short overview
The CERN Large Hadron Collider (LHC) started operation a few months ago. The
machine will deliver proton-proton and nucleus-nucleus collisions at energies
as high as sqrt(s)=14 TeV and luminosities up to L~10^{34} cm^{-2}s^{-1}, never
reached before. The main open scientific questions that the seven LHC
experiments -- ATLAS, CMS, ALICE, LHCb, TOTEM, LHCf and MOEDAL -- aim to solve
in the coming years are succinctly reviewed.Comment: 9 pages, 16 plots. Invited review talk Hot-Quarks 2010, La
Londe-Les-Maures, July 2010. J. Phys. Conf. Ser. 270, 012001 (2011). Minor
typos correcte
Supersymmetry discovery potential of the LHC at 10 and 14 TeV without and with missing
We examine the supersymmetry (SUSY) reach of the CERN LHC operating at
and 14 TeV within the framework of the minimal supergravity
model. We improve upon previous reach projections by incorporating updated
background calculations including a variety of Standard Model (SM)
processes. We show that SUSY discovery is possible even before the detectors
are understood well enough to utilize either or electrons in
the signal. We evaluate the early SUSY reach of the LHC at TeV by
examining multi-muon plus jets and also dijet events with {\it no}
missing cuts and show that the greatest reach in terms of
occurs in the dijet channel. The reach in multi-muons is slightly smaller in
, but extends to higher values of . We find that an observable
multi-muon signal will first appear in the opposite-sign dimuon channel, but as
the integrated luminosity increases the relatively background-free but
rate-limited same-sign dimuon, and ultimately the trimuon channel yield the
highest reach. We show characteristic distributions in these channels that
serve to distinguish the signal from the SM background, and also help to
corroborate its SUSY origin. We then evaluate the LHC reach in various
no-lepton and multi-lepton plus jets channels {\it including} missing
cuts for and 14 TeV, and plot the reach for integrated
luminosities ranging up to 3000 fb at the SLHC. For TeV,
the LHC reach extends to and 2.9 TeV for
and integrated luminosities of 10, 100, 1000 and
3000 fb, respectively. For TeV, the LHC reach for the same
integrated luminosities is to m_{gluino}=2.4,\3.1, 3.7 and 4.0 TeV.Comment: 34 pages, 25 figures. Revised projections for the SUSY reach for
ab^-1 integrated luminosities, with minor corrections of references and text.
2 figures added. To appear in JHE
Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection
In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass
unification, the predicted relic abundance of neutralinos usually exceeds the
strict limits imposed by the WMAP collaboration. One way to obtain the correct
relic abundance is to abandon gaugino mass universality and allow a mixed
wino-bino lightest SUSY particle (LSP). The enhanced annihilation and
scattering cross sections of mixed wino dark matter (MWDM) compared to bino
dark matter lead to enhanced rates for direct dark matter detection, as well as
for indirect detection at neutrino telescopes and for detection of dark matter
annihilation products in the galactic halo. For collider experiments, MWDM
leads to a reduced but significant mass gap between the lightest neutralinos so
that chi_2^0 two-body decay modes are usually closed. This means that dilepton
mass edges-- the starting point for cascade decay reconstruction at the CERN
LHC-- should be accessible over almost all of parameter space. Measurement of
the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross
sections as a function of beam polarization at the International Linear
Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in
the universe.Comment: 29 pages including 19 eps figure
Measuring the Higgs Sector
If we find a light Higgs boson at the LHC, there should be many observable
channels which we can exploit to measure the relevant parameters in the Higgs
sector. We use the SFitter framework to map these measurements on the parameter
space of a general weak-scale effective theory with a light Higgs state of mass
120 GeV. Our analysis benefits from the parameter determination tools and the
error treatment used in new--physics searches, to study individual parameters
and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere
Dark matter allowed scenarios for Yukawa-unified SO(10) SUSY GUTs
Simple supersymmetric grand unified models based on the gauge group SO(10)
require --in addition to gauge and matter unification-- the unification of
t-b-\tau Yukawa couplings. Yukawa unification, however, only occurs for very
special values of the soft SUSY breaking parameters. We perform a search using
a Markov Chain Monte Carlo (MCMC) technique to investigate model parameters and
sparticle mass spectra which occur in Yukawa-unified SUSY models, where we also
require the relic density of neutralino dark matter to saturate the
WMAP-measured abundance. We find the spectrum is characterizd by three mass
scales: first/second generation scalars in the multi-TeV range, third
generation scalars in the TeV range, and gauginos in the \sim 100 GeV range.
Most solutions give far too high a relic abundance of neutralino dark matter.
The dark matter discrepancy can be rectified by 1. allowing for neutralino
decay to axino plus photon, 2. imposing gaugino mass non-universality or 3.
imposing generational non-universality. In addition, the MCMC approach finds 4.
a compromise solution where scalar masses are not too heavy, and where
neutralino annihilation occurs via the light Higgs h resonance. By imposing
weak scale Higgs soft term boundary conditions, we are also able to generate 5.
low \mu, m_A solutions with neutralino annihilation via a light A resonance,
though these solutions seem to be excluded by CDF/D0 measurements of the B_s\to
\mu^+\mu^- branching fraction. Based on the dual requirements of Yukawa
coupling unification and dark matter relic density, we predict new physics
signals at the LHC from pair production of 350--450 GeV gluinos. The events are
characterized by very high b-jet multiplicity and a dilepton mass edge around
mz2-mz1 \sim 50-75 GeV.Comment: 35 pages with 21 eps figure
Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter
In supersymmetric models with non-universal gaugino masses, it is possible to
have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the
gaugino eigenstates experience little mixing so that the lightest SUSY particle
remains either pure bino or pure wino. The neutralino relic density can only be
brought into accord with the WMAP measured value when bino-wino co-annihilation
(BWCA) acts to enhance the dark matter annihilation rate. We map out parameter
space regions and mass spectra which are characteristic of the BWCA scenario.
Direct and indirect dark matter detection rates are shown to be typically very
low. At collider experiments, the BWCA scenario is typified by a small mass gap
m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays
of \tilde Z_2 are not allowed. However, in this case the second lightest
neutralino has an enhanced loop decay branching fraction to photons. While the
photonic neutralino decay signature looks difficult to extract at the Fermilab
Tevatron, it should lead to distinctive events at the CERN LHC and at a linear
e^+e^- collider.Comment: 44 pages, 21 figure
