1,451 research outputs found
Fuzzy sliding mode control of an offshore container crane
© 2017 A fuzzy sliding mode control strategy for offshore container cranes is investigated in this study. The offshore operations of loading and unloading containers are performed between a mega container ship, called the mother ship, and a smaller ship, called the mobile harbor (MH), which is equipped with a container crane. The MH is used to transfer the containers, in the open sea, and deliver them to a conventional stevedoring port, thereby minimizing the port congestion and also eliminating the need of expanding outwards. The control objective during the loading and unloading process is to keep the payload in a desired tolerance in harsh conditions of the MH motion. The proposed control strategy combines a fuzzy sliding mode control law and a prediction algorithm based on Kalman filtering for the MH roll angle. Here, the sliding surface is designed to incorporate the desired trolley trajectory while suppressing the sway motion of the payload. To improve the control performance, the discontinuous gain of the sliding control is adjusted with fuzzy logic tuning schemes with respect to the sliding function and its rate of change. Chattering is further reduced by a saturation function. Simulation and experimental results are provided to verify the effectiveness of the proposed control system for offshore container cranes
Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs
© 2017 Elsevier Ltd Wetland roof (WR) could bring many advantages for tropical cities such as thermal benefits, flood control, green coverage and domestic wastewater treatment. This study investigates wastewater treatment and biomass growth of eight local plants in shallow bed WRs. Results showed that removal rates of WRs were 21–28 kg COD ha−1 day−1, 9–13 kg TN ha−1 day−1 and 0.5–0.9 kg TP ha−1 day−1, respectively. The plants generated more biomass at lower hydraulic loading rate (HLR). Dry biomass growth was 0.4–28.1 g day−1 for average HLR of 247–403 m3 ha−1 day−1. Green leaf area of the plants was ranging as high as 67–99 m2 leaves per m2 of WR. In general, the descent order of Kyllinga brevifoliaRottb (WR8), Cyperus javanicus Houtt (WR5) and Imperata cylindrical (WR4) was suggested as effective vegetations in WR conditions in terms of wastewater treatment, dry biomass growth and green coverage ratio
The dependence of dijet production on photon virtuality in ep collisions at HERA
The dependence of dijet production on the virtuality of the exchanged photon,
Q^2, has been studied by measuring dijet cross sections in the range 0 < Q^2 <
2000 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of
38.6 pb^-1.
Dijet cross sections were measured for jets with transverse energy E_T^jet >
7.5 and 6.5 GeV and pseudorapidities in the photon-proton centre-of-mass frame
in the range -3 < eta^jet <0. The variable xg^obs, a measure of the photon
momentum entering the hard process, was used to enhance the sensitivity of the
measurement to the photon structure. The Q^2 dependence of the ratio of low- to
high-xg^obs events was measured.
Next-to-leading-order QCD predictions were found to generally underestimate
the low-xg^obs contribution relative to that at high xg^obs. Monte Carlo models
based on leading-logarithmic parton-showers, using a partonic structure for the
photon which falls smoothly with increasing Q^2, provide a qualitative
description of the data.Comment: 35 pages, 6 eps figures, submitted to Eur.Phys.J.
Effect of ciprofloxacin dosages on the performance of sponge membrane bioreactor treating hospital wastewater
© 2018 Elsevier Ltd This study aimed to evaluate treatment performance and membrane fouling of a lab-scale Sponge-MBR under the added ciprofloxacin (CIP) dosages (20; 50; 100 and 200 µg L−1) treating hospital wastewater. The results showed that Sponge-MBR exhibited effective removal of COD (94–98%) during the operation period despite increment of CIP concentrations from 20 to 200 µg L−1. The applied CIP dosage of 200 µg L−1 caused an inhibition of microorganisms in sponges, i.e. significant reduction of the attached biomass and a decrease in the size of suspended flocs. Moreover, this led to deteriorating the denitrification rate to 3–12% compared to 35% at the other lower CIP dosages. Importantly, Sponge-MBR reinforced the stability of CIP removal at various added CIP dosages (permeate of below 13 µg L−1). Additionally, the fouling rate at CIP dosage of 200 µg L−1 was 30.6 times lower compared to the control condition (no added CIP dosage)
Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector
The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell
Biopolymer composite cell walls maintain cell shape and resist forces in plants, fungi and
bacteria. Peptidoglycan, a crucial antibiotic target and immunomodulator, performs this role
in bacteria. The textbook structural model of peptidoglycan is a highly ordered, crystalline
material. Here we use atomic force microscopy (AFM) to image individual glycan chains in
peptidoglycan from Escherichia coli in unprecedented detail. We quantify and map the extent
to which chains are oriented in a similar direction (orientational order), showing it is much
less ordered than previously depicted. Combining AFM with size exclusion chromatography,
we reveal glycan chains up to 200 nm long. We show that altered cell shape is associated
with substantial changes in peptidoglycan biophysical properties. Glycans from E. coli in its
normal rod shape are long and circumferentially oriented, but when a spheroid shape is
induced (chemically or genetically) glycans become short and disordered
Methylthioadenosine reprograms macrophage activation through adenosine receptor stimulation
Regulation of inflammation is necessary to balance sufficient pathogen clearance with excessive tissue damage. Central to regulating inflammation is the switch from a pro-inflammatory pathway to an anti-inflammatory pathway. Macrophages are well-positioned to initiate this switch, and as such are the target of multiple therapeutics. One such potential therapeutic is methylthioadenosine (MTA), which inhibits TNFα production following LPS stimulation. We found that MTA could block TNFα production by multiple TLR ligands. Further, it prevented surface expression of CD69 and CD86 and reduced NF-KB signaling. We then determined that the mechanism of this action by MTA is signaling through adenosine A2 receptors. A2 receptors and TLR receptors synergized to promote an anti-inflammatory phenotype, as MTA enhanced LPS tolerance. In contrast, IL-1β production and processing was not affected by MTA exposure. Taken together, these data demonstrate that MTA reprograms TLR activation pathways via adenosine receptors to promote resolution of inflammation. © 2014 Keyel et al
- …
