270 research outputs found

    CX3CR1 Polymorphisms are associated with atopy but not asthma in German children

    Get PDF
    Chemokines and their receptors are involved in many aspects of immunity. Chemokine CX3CL1, acting via its receptor CX3CR1, regulates monocyte migration and macrophage differentiation as well as T cell-dependent inflammation. Two common, nonsynonymous polymorphisms in CX3CR1 have previously been shown to alter the function of the CX3CL1/CX3CR1 pathway and were suggested to modify the risk for asthma. Using matrix-assisted laser desorption/ionization time-of-flight technology, we genotyped polymorphisms Val249Ile and Thr280Met in a cross-sectional population of German children from Munich (n = 1,159) and Dresden ( n = 1,940). For 249Ile an odds ratio of 0.77 (95% confidence interval 0.63-0.96; p = 0.017) and for 280Met an odds ratio of 0.71 ( 95% confidence interval 0.56-0.89; p = 0.004) were found with atopy in Dresden but not in Munich. Neither polymorphism was associated with asthma. Thus, amino acid changes in CX3CR1 may influence the development of atopy but not asthma in German children. Potentially, other factors such as environmental effects may modify the role of CX3CR1 polymorphisms. Copyright (c) 2007 S. Karger AG, Basel

    Nose profile morphology and accuracy study of nose profile estimation method in Scottish subadult and Indonesian adult populations

    Get PDF
    This study investigated nose profile morphology and its relationship to the skull in Scottish subadult and Indonesian adult populations, with the aim of improving the accuracy of forensic craniofacial reconstruction. Samples of 86 lateral head cephalograms from Dundee Dental School (mean age, 11.8 years) and 335 lateral head cephalograms from the Universitas Padjadjaran Dental Hospital, Bandung, Indonesia (mean age 24.2 years), were measured. The method of nose profile estimation based on skull morphology previously proposed by Rynn and colleagues in 2010 (FSMP 6:20–34) was tested in this study. Following this method, three nasal aperture-related craniometrics and six nose profile dimensions were measured from the cephalograms. To assess the accuracy of the method, six nose profile dimensions were estimated from the three craniometric parameters using the published method and then compared to the actual nose profile dimensions. In the Scottish subadult population, no sexual dimorphism was evident in the measured dimensions. In contrast, sexual dimorphism of the Indonesian adult population was evident in all craniometric and nose profile dimensions; notably, males exhibited statistically significant larger values than females. The published method by Rynn and colleagues (FSMP 6:20–34, 2010) performed better in the Scottish subadult population (mean difference of maximum, 2.35 mm) compared to the Indonesian adult population (mean difference of maximum, 5.42 mm in males and 4.89 mm in females). In addition, regression formulae were derived to estimate nose profile dimensions based on the craniometric measurements for the Indonesian adult population. The published method is not sufficiently accurate for use on the Indonesian population, so the derived method should be used. The accuracy of the published method by Rynn and colleagues (FSMP 6:20–34, 2010) was sufficiently reliable to be applied in Scottish subadult population

    The Hubbard model within the equations of motion approach

    Full text link
    The Hubbard model has a special role in Condensed Matter Theory as it is considered as the simplest Hamiltonian model one can write in order to describe anomalous physical properties of some class of real materials. Unfortunately, this model is not exactly solved except for some limits and therefore one should resort to analytical methods, like the Equations of Motion Approach, or to numerical techniques in order to attain a description of its relevant features in the whole range of physical parameters (interaction, filling and temperature). In this manuscript, the Composite Operator Method, which exploits the above mentioned analytical technique, is presented and systematically applied in order to get information about the behavior of all relevant properties of the model (local, thermodynamic, single- and two- particle ones) in comparison with many other analytical techniques, the above cited known limits and numerical simulations. Within this approach, the Hubbard model is shown to be also capable to describe some anomalous behaviors of the cuprate superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference

    New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease

    Get PDF
    Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.Frank Jakobus Rühli and Maciej Henneber

    Measurement of triple gauge-boson couplings at 172 GeV

    Get PDF
    The triple gauge-boson couplings, Awp, Aw and Abp, have been measured using 34 semileptonically and 54 hadronically decaying WW candidate events. The events were selected in the data recorded during 1996 with the ALEPH detector at 172 GeV, corresponding to an integrated luminosity of 10.65 pb^-1. The triple gauge-boson couplings have been measured using optimal observables constructed from kinematic information of WW events. The results are in agreement with the Standard Model expectation

    Determination of sin2 θeff w using jet charge measurements in hadronic Z decays

    Get PDF
    The electroweak mixing angle is determined with high precision from measurements of the mean difference between forward and backward hemisphere charges in hadronic decays of the Z. A data sample of 2.5 million hadronic Z decays recorded over the period 1990 to 1994 in the ALEPH detector at LEP is used. The mean charge separation between event hemispheres containing the original quark and antiquark is measured for bb̄ and cc̄ events in subsamples selected by their long lifetimes or using fast D*'s. The corresponding average charge separation for light quarks is measured in an inclusive sample from the anticorrelation between charges of opposite hemispheres and agrees with predictions of hadronisation models with a precision of 2%. It is shown that differences between light quark charge separations and the measured average can be determined using hadronisation models, with systematic uncertainties constrained by measurements of inclusive production of kaons, protons and A's. The separations are used to measure the electroweak mixing angle precisely as sin2 θeff w = 0.2322 ± 0.0008(exp. stat.) ±0.0007(exp. syst.) ± 0.0008(sep.). The first two errors are due to purely experimental sources whereas the third stems from uncertainties in the quark charge separations

    Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE) mission overview

    Get PDF
    The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) is a joint US/UK mission consisting of two 6U CubeSats actively maintaining a lead-follow configuration in the same low Earth orbit with a launch planned for the 2020 timeframe. These nanosatellites will each feature multiple space weather payloads. From the US, the Naval Research Laboratory will provide two 1U Triple Tiny Ionospheric Photometers (Tri-TIPs) on each satellite, observing the ultraviolet 135.6 nm emission of atomic oxygen at nighttime. The primary objective is to characterize the twodimensional distribution of electrons in the Equatorial Ionization Anomaly (EIA). The methodology used to reconstruct the nighttime ionosphere employs continuous UV photometry from four distinct viewing angles in combination with an additional data source, such as in situ plasma density measurements, with advanced image space reconstruction algorithm tomography techniques. From the UK, the Defence Science and Technology Laboratory (Dstl) is providing the In-situ and Remote Ionospheric Sensing suite consisting of an Ion/Neutral Mass Spectrometer, a triple-frequency GPS receiver for ionospheric sensing, and a radiation environment monitor. We present our mission concept, simulations illustrating the imaging capability of the Tri-TIP sensor suite, and a range of science questions addressable via these measurements

    Measurement of the W mass by direct reconstruction in e+ee^+ e^- collisions at 172 GeV

    Get PDF
    The mass of the W boson is obtained from reconstructed invariant mass distributions in W-pair events. The sample of W pairs is selected from 10.65~pb1^{-1} collected with the ALEPH detector at a mean centre-of-mass energy of 172.09 \GEV. The invariant mass distribution of simulated events are fitted to the experimental distributions and the following W masses are obtained: WWqqqqmW=81.30+0.47(stat.)+0.11(syst.)GeV/c2WW \to q\overline{q}q\overline{q } m_W = 81.30 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWlνqq(l=e,μ)mW=80.54+0.47(stat.)+0.11(syst.)GeV/c2WW \to l\nu q\overline{q}(l=e,\mu) m_W = 80.54 +- 0.47(stat.) +- 0.11(syst.) GeV/c^2, WWτνqqmW=79.56+1.08(stat.)+0.23(syst.)GeV/C62WW \to \tau\nu q\overline{q} m_W = 79.56 +- 1.08(stat.) +- 0.23(syst.) GeV/C62. The statistical errors are the expected errors for Monte Carlo samples of the same integrated luminosity as the data. The combination of these measurements gives: mW=80.80+0.11(syst.)+0.03(LEPenergy)GeV/2m_W = 80.80 +- 0.11(syst.) +- 0.03(LEP energy) GeV/^2

    Laparoscopic fistula excision and omentoplasty for high rectovaginal fistulas: a prospective study of 40 patients

    Get PDF
    AIM: The aim of this study is to prospectively evaluate 40 patients with a high rectovaginal fistula treated by a laparoscopic fistula division and closure, followed by an omentoplasty. PATIENTS AND METHODS: Forty patients with a rectovaginal fistula, between the middle third of the rectum and the posterior vaginal fornix, resulting from different causes (IBD, iatrogenic and birth trauma) were treated by a laparoscopic excision of the fistula and insertion of an omentoplasty in the rectovaginal septum. The patients completed the gastrointestinal quality of life index questionnaire (GIQLI) and the Cleveland Clinic incontinence score (CCIS). All tests were performed at regular intervals after treatment. RESULTS: In 38 (95%) patients with a median age of 53 years (range 33-72), the surgical procedure was feasible. In two patients, the fistula was closed without an omentoplasty, and a diverting stoma was performed. The median follow-up was 28 months (range 10-35). Two patients (5%) developed a recurrent fistula. In one patient, the interposed omentum became necrotic and was successfully treated laparoscopically. In another patient, an abscess developed, which needed drainage procedures. The mean CCIS was 9 (range 7-10) before treatment and 10 (range 7-13) after treatment (p = 0.5 Wilcoxon). The median GIQLI score was 85 (range 34-129) before treatment and 120 (range75-142) after treatment (p = 0.0001, Wilcoxon). CONCLUSIONS: Laparoscopic fistula excision combined with omentoplasty is a good treatment modality with a high healing rate for high rectovaginal fistulas and an acceptable complication rate

    Coordinated Ionospheric Reconstruction CubeSat Experiment (CIRCE), In situ and Remote Ionospheric Sensing (IRIS) suite

    Get PDF
    The UK’s Defence Science and Technology Laboratory (Dstl) is partnering with the US Naval Research Laboratory (NRL) on a joint mission to launch miniature sensors that will advance space weather measurement and modelling capabilities. The Coordinated Ionospheric Reconstruction Cubesat Experiment (CIRCE) comprises two 6U cube-satellites that will be launched into a near-polar low earth orbit (LEO), targeting 500 km altitude, in 2021. The UK contribution to CIRCE is the In situ and Remote Ionospheric Sensing (IRIS) suite, complementary to NRL sensors, and comprising three highly miniaturised payloads provided to Dstl by University College London (UCL), University of Bath, and University of Surrey/Surrey Satellite Technology Ltd (SSTL). One IRIS suite will be flown on each satellite, and incorporates an ion/neutral mass spectrometer, a tri-band global positioning system (GPS) receiver for ionospheric remote sensing, and a radiation environment monitor. From the US, NRL have provided two 1U Triple Tiny Ionospheric Photometers (Tri-TIPs) on each satellite (Nicholas et al., 2019), observing the ultraviolet 135.6 nm emission of atomic oxygen at night-time to characterize the two-dimensional distribution of electrons
    corecore