15 research outputs found
Effects of self-generation in imperfectly competitive electricity markets: The case of Spain
[EN] Domestic rooftop photovoltaic (PV) energy can reduce net electricity demand, and therefore reduce energy prices through a merit-order effect. This reduces profits of all incumbents in the electricity markets. In addition, in imperfectly competitive markets, PV self-generation reduces prices through a reduction in market power. The first effect may warrant additional policy interventions to maintain cost recovery, but the second is much more desirable, as it simultaneously helps increase sustainability and competition. However, unlike a simple reduction in market prices, the competition effect affects all incumbents differently. Since resistance from incumbents can be a significant barrier to energy policy change, it is important to understand the distribution of effects. This paper does so for the Spanish market. A Nash-Cournot model and a simplified representation of the Spanish electricity market is used to determine the merit-order and competition effects of an increase in solar self-generation. We conclude that both are important, and that their analysis is essential to inform the social debate around PV policy.Financial support from the UK Engineering and Physical Research Council through grant EP/P001173/1 (Centre for Energy Systems Integration) and from the Friedrich-Alexander-Universitat Erlangen-Nurnberg through a Scholler Fellowship held by Dr. van der Weijde is gratefully acknowledged. Financial support from the Spanish Ministry of Education under the scholarship FPU16/00962 is thankfully acknowledged.Ribó-Pérez, DG.; Van Der Weijde, AH.; Álvarez, C. (2019). Effects of self-generation in imperfectly competitive electricity markets: The
case of Spain. Energy Policy. 113:1-12. https://doi.org/10.1016/j.enpol.2019.110920S11211
Impediments to community fisheries management: Some findings in Kompong Pou commune, Krakor District in Cambodia's Tonle Sap
Hydro-dam – A nature-based solution or an ecological problem: The fate of the Tonlé Sap Lake
A netnographic study of P2P collaborative consumption platforms’ user interface and design
One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment
[EN] This paper focuses on investigating greener alternatives of cellular concrete technology to fulfil current searches for a shift to circular economy. A novel one-part eco-cellular concrete (ECC-OP) was developed and studied. The one-part alkali activated materials (AAM-OP) and new alkali-activated cellular concrete (AACC) technologies were combined to develop greener alternative of cellular concrete production. The progressive steps from traditional cellular concrete (TCC) based on ordinary Portland cement (OPC) and commercial aluminium powder (A) to a 100% waste-based cellular concrete are presented. Blast furnace slag (BFS) was the precursor, RHA was employed as the silica source, olive stone biomass ash (OBA) was the alkali source and recycled aluminium foil (AR) was employed as an aerating agent. The functional features of the materials were studied and compared to those established by the European standard and the American Concrete Institute (ACI) Committee 523 guides. The new ECC-OP with a bulk density, compressive strength and thermal conductivity that respectively equal 660 kg/m(3), 6.3 MPa and 0.20 W/ mK was obtained. Finally, a cradle-to-gate life cycle assessment (LCA) was made, where the industrial process of a masonry unit manufacture was raised by using each studied material. A 96% reduction in the kgCO(2)eq per m(3) of material was reached with the new proposed ECC-OP compared to TCC manufacturing. (C) 2020 Elsevier Ltd. All rights reserved.The authors gratefully acknowledge the GeocelPlus-UPV Project, Almazara Candela - Elche, Spain and DACSA S.A. - Tabernes Blanques, Spain and Cementval - Puerto de Sagunto, Spain.Font-Pérez, A.; Soriano Martinez, L.; Tashima, M.; Monzó Balbuena, JM.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). One-part eco-cellular concrete for the precast industry: functional features and life cycle assessment. Journal of Cleaner Production. 269:1-14. https://doi.org/10.1016/j.jclepro.2020.122203S114269Bai, C., & Colombo, P. (2018). Processing, properties and applications of highly porous geopolymers: A review. Ceramics International, 44(14), 16103-16118. doi:10.1016/j.ceramint.2018.05.219Bouzón, N., Payá, J., Borrachero, M. V., Soriano, L., Tashima, M. M., & Monzó, J. (2014). Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders. Materials Letters, 115, 72-74. doi:10.1016/j.matlet.2013.10.001Chen, Y.-L., Ko, M.-S., Chang, J.-E., & Lin, C.-T. (2018). Recycling of desulfurization slag for the production of autoclaved aerated concrete. Construction and Building Materials, 158, 132-140. doi:10.1016/j.conbuildmat.2017.09.195Chica, L., & Alzate, A. (2019). Cellular concrete review: New trends for application in construction. Construction and Building Materials, 200, 637-647. doi:10.1016/j.conbuildmat.2018.12.136Choo, H., Lim, S., Lee, W., & Lee, C. (2016). Compressive strength of one-part alkali activated fly ash using red mud as alkali supplier. Construction and Building Materials, 125, 21-28. doi:10.1016/j.conbuildmat.2016.08.015Colangelo, F., Forcina, A., Farina, I., & Petrillo, A. (2018). Life Cycle Assessment (LCA) of Different Kinds of Concrete Containing Waste for Sustainable Construction. Buildings, 8(5), 70. doi:10.3390/buildings8050070Dahmen, J., Kim, J., & Ouellet-Plamondon, C. M. (2018). Life cycle assessment of emergent masonry blocks. Journal of Cleaner Production, 171, 1622-1637. doi:10.1016/j.jclepro.2017.10.044De Moraes Pinheiro, S. M., Font, A., Soriano, L., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2018). Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials, 178, 327-338. doi:10.1016/j.conbuildmat.2018.05.157Esmaily, H., & Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26(1), 200-206. doi:10.1016/j.conbuildmat.2011.06.010Font, A., Borrachero, M. V., Soriano, L., Monzó, J., Mellado, A., & Payá, J. (2018). New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 20(20), 4684-4694. doi:10.1039/c8gc02066cFont, A., Borrachero, M. V., Soriano, L., Monzó, J., & Payá, J. (2017). Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 168, 1120-1131. doi:10.1016/j.jclepro.2017.09.110Font, A., Soriano, L., de Moraes Pinheiro, S. M., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2020). Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production, 243, 118568. doi:10.1016/j.jclepro.2019.118568Font, A., Soriano, L., Moraes, J. C. B., Tashima, M. M., Monzó, J., Borrachero, M. V., & Payá, J. (2017). A 100% waste-based alkali-activated material by using olive-stone biomass ash (OBA) and blast furnace slag (BFS). Materials Letters, 203, 46-49. doi:10.1016/j.matlet.2017.05.129Hajimohammadi, A., Ngo, T., Mendis, P., Kashani, A., & van Deventer, J. S. J. (2017). Alkali activated slag foams: The effect of the alkali reaction on foam characteristics. Journal of Cleaner Production, 147, 330-339. doi:10.1016/j.jclepro.2017.01.134Hassan, H. S., Abdel-Gawwad, H. A., García, S. R. V., & Israde-Alcántara, I. (2018). Fabrication and characterization of thermally-insulating coconut ash-based geopolymer foam. Waste Management, 80, 235-240. doi:10.1016/j.wasman.2018.09.022He, J., Gao, Q., Song, X., Bu, X., & He, J. (2019). Effect of foaming agent on physical and mechanical properties of alkali-activated slag foamed concrete. Construction and Building Materials, 226, 280-287. doi:10.1016/j.conbuildmat.2019.07.302Kamseu, E., NGouloure, Z. N. M., Ali, B. N., Zekeng, S., Melo, U. C., Rossignol, S., & Leonelli, C. (2015). Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 88, 45-56. doi:10.1016/j.enbuild.2014.11.066Keawpapasson, P., Tippayasam, C., Ruangjan, S., Thavorniti, P., Panyathanmaporn, T., Fontaine, A., … Chaysuwan, D. (2014). Metakaolin-Based Porous Geopolymer with Aluminium Powder. Key Engineering Materials, 608, 132-138. doi:10.4028/www.scientific.net/kem.608.132Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). Comparison of alkali and silica sources in one-part alkali-activated blast furnace slag mortar. Journal of Cleaner Production, 187, 171-179. doi:10.1016/j.jclepro.2018.03.202Ma, C., Zhao, B., Guo, S., Long, G., & Xie, Y. (2019). Properties and characterization of green one-part geopolymer activated by composite activators. Journal of Cleaner Production, 220, 188-199. doi:10.1016/j.jclepro.2019.02.159Mellado, A., Catalán, C., Bouzón, N., Borrachero, M. V., Monzó, J. M., & Payá, J. (2014). Carbon footprint of geopolymeric mortar: study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv., 4(45), 23846-23852. doi:10.1039/c4ra03375bMoraes, J. C. B., Font, A., Soriano, L., Akasaki, J. L., Tashima, M. M., Monzó, J., … Payá, J. (2018). New use of sugar cane straw ash in alkali-activated materials: A silica source for the preparation of the alkaline activator. Construction and Building Materials, 171, 611-621. doi:10.1016/j.conbuildmat.2018.03.230Novais, R. M., Buruberri, L. H., Seabra, M. P., Bajare, D., & Labrincha, J. A. (2016). Novel porous fly ash-containing geopolymers for pH buffering applications. Journal of Cleaner Production, 124, 395-404. doi:10.1016/j.jclepro.2016.02.114Novais, R. M., Senff, L., Carvalheiras, J., Seabra, M. P., Pullar, R. C., & Labrincha, J. A. (2019). Sustainable and efficient cork - inorganic polymer composites: An innovative and eco-friendly approach to produce ultra-lightweight and low thermal conductivity materials. Cement and Concrete Composites, 97, 107-117. doi:10.1016/j.cemconcomp.2018.12.024Peys, A., Rahier, H., & Pontikes, Y. (2016). Potassium-rich biomass ashes as activators in metakaolin-based inorganic polymers. Applied Clay Science, 119, 401-409. doi:10.1016/j.clay.2015.11.003Puertas, F., & Torres-Carrasco, M. (2014). Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cement and Concrete Research, 57, 95-104. doi:10.1016/j.cemconres.2013.12.005Robayo-Salazar, R., Mejía-Arcila, J., Mejía de Gutiérrez, R., & Martínez, E. (2018). Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Construction and Building Materials, 176, 103-111. doi:10.1016/j.conbuildmat.2018.05.017Stoleriu, S., Vlasceanu, I. N., Dima, C., Badanoiu, A. I., & Voicu, G. (2019). Alkali activated materials based on glass waste and slag for thermal and acoustic insulation. Materiales de Construcción, 69(335), 194. doi:10.3989/mc.2019.08518Sturm, P., Gluth, G. J. G., Brouwers, H. J. H., & Kühne, H.-C. (2016). Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials, 124, 961-966. doi:10.1016/j.conbuildmat.2016.08.017Van den Heede, P., & De Belie, N. (2012). Environmental impact and life cycle assessment (LCA) of traditional and ‘green’ concretes: Literature review and theoretical calculations. Cement and Concrete Composites, 34(4), 431-442. doi:10.1016/j.cemconcomp.2012.01.004Xuan, D., Tang, P., & Poon, C. S. (2019). MSWIBA-based cellular alkali-activated concrete incorporating waste glass powder. Cement and Concrete Composites, 95, 128-136. doi:10.1016/j.cemconcomp.2018.10.018Yang, K.-H., Lee, K.-H., Song, J.-K., & Gong, M.-H. (2014). Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production, 68, 226-233. doi:10.1016/j.jclepro.2013.12.068Zabalza Bribián, I., Valero Capilla, A., & Aranda Usón, A. (2011). Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Building and Environment, 46(5), 1133-1140. doi:10.1016/j.buildenv.2010.12.002Ziegler, D., Formia, A., Tulliani, J.-M., & Palmero, P. (2016). Environmentally-Friendly Dense and Porous Geopolymers Using Fly Ash and Rice Husk Ash as Raw Materials. Materials, 9(6), 466. doi:10.3390/ma906046
