425 research outputs found

    Cassini detection of Enceladus' cold water-group plume ionosphere

    Get PDF
    This study reports direct detection by the Cassini plasma spectrometer of freshly-produced water-group ions (O+, OH+, H2O+, H3O+) and heavier water dimer ions (HxO(2))(+) very close to Enceladus where the plasma begins to emerge from the plume. The data were obtained during two close ( 52 and 25 km) flybys of Enceladus in 2008 and are similar to ion data in cometary comas. The ions are observed in detectors looking in the Cassini ram direction exhibiting energies consistent with the Cassini speed, indicative of a nearly stagnant plasma flow in the plume. North of Enceladus the plasma slowing commences about 4 to 6 Enceladus radii away, while south of Enceladus signatures of the plasma interaction with the plume are detected 22 Enceladus radii away. Citation: Tokar, R. L., R. E. Johnson, M. F. Thomsen, R. J. Wilson, D. T. Young, F. J. Crary, A. J. Coates, G. H. Jones, and C. S. Paty ( 2009), Cassini detection of Enceladus' cold water-group plume ionosphere, Geophys. Res. Lett., 36, L13203, doi:10.1029/2009GL038923

    Warping of Saturn's magnetospheric and magnetotail current sheets

    Get PDF
    The magnetotails of Jupiter and Earth are known to be hinged so that their orientation is controlled by the magnetic field of the planet at small distances and asymptotically approach the direction of the flow of the solar wind at large distances. In this paper we present Cassini observations showing that Saturn's magnetosphere is also similarly hinged. Furthermore, we find that Saturn's magnetosphere is not only hinged in the tail but also on the dayside, in contrast to the Jovian and terrestrial magnetospheres. Over the midnight, dawn, and noon local time sectors we find that the current sheet is displaced above Saturn's rotational equator, and thus the current sheet adopts the shape of a bowl or basin. We present a model to describe the warped current sheet geometry and show that in order to properly describe the magnetic field in the magnetosphere, this hinging must be incorporated. We discuss the impact on plasma observations made in Saturn's equatorial plane, the influence on Titan's magnetospheric interaction, and the effect of periodicities on the mean current sheet structure

    Ionospheric electrons in Titan's tail: Plasma structure during the cassini T9 encounter

    Get PDF
    We present results from the CAPS electron spectrometer obtained during the downstream flyby of Titan on 26 December 2005, which occurred during a period of enhanced plasma pressure inside the magnetosphere. The electron data show an unusual split signature with two principal intervals of interest outside the nominal corotation wake. Interval 1 shows direct evidence for ionospheric plasma escape at several RT in Titan's tail. Interval 2 shows a complex plasma structure, a mix between plasma of ionospheric and magnetospheric origin. We suggest a mechanism for plasma escape based on ambipolar electric fields set up by suprathermal ionospheric photoelectrons

    Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail

    Get PDF
    Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19?h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies

    Internally driven large-scale changes in the size of Saturn's magnetosphere

    Get PDF
    Saturn’s magnetic field acts as an obstacle to solar wind flow, deflecting plasma around the planet and forming a cavity known as the magnetosphere. The magnetopause defines the boundary between the planetary and solar dominated regimes, and so is strongly influenced by the variable nature of pressure sources both outside and within. Following from Pilkington et al. (2014), crossings of the magnetopause are identified using 7 years of magnetic field and particle data from the Cassini spacecraft and providing unprecedented spatial coverage of the magnetopause boundary. These observations reveal a dynamical interaction where, in addition to the external influence of the solar wind dynamic pressure, internal drivers, and hot plasma dynamics in particular can take almost complete control of the system’s dayside shape and size, essentially defying the solar wind conditions. The magnetopause can move by up to 10–15 planetary radii at constant solar wind dynamic pressure, corresponding to relatively “plasma-loaded” or “plasma-depleted” states, defined in terms of the internal suprathermal plasma pressure

    Mass of Saturn's magnetodisc: Cassini observations

    Get PDF
    Saturn's ring current was observed by Pioneer 11 and the two Voyager spacecraft to extend 8 - 16 R-S in the equatorial plane and appeared to be driven by stress balance with the centrifugal force. We present Cassini observations that show thin current sheets on the dawn flank of Saturn's magnetosphere, symptomatic of the formation of a magnetodisc. We show that the centrifugal force is the dominant mechanical stress in these current sheets, which reinforces a magnetodisc interpretation - the formation of the current sheet is fundamentally rotational in origin. The stress balance calculation is also used to estimate the mass density in the disc, which show good agreement with independent in-situ measurements of the density. We estimate the total mass in the magnetodisc to be similar to 10(6) kg

    Planetary science and exploration in the deep subsurface: results from the MINAR Program, Boulby Mine, UK

    Get PDF
    The subsurface exploration of other planetary bodies can be used to unravel their geological history and assess their habitability. On Mars in particular, present-day habitable conditions may be restricted to the subsurface. Using a deep subsurface mine, we carried out a program of extraterrestrial analog research – MINe Analog Research (MINAR). MINAR aims to carry out the scientific study of the deep subsurface and test instrumentation designed for planetary surface exploration by investigating deep subsurface geology, whilst establishing the potential this technology has to be transferred into the mining industry. An integrated multi-instrument suite was used to investigate samples of representative evaporite minerals from a subsurface Permian evaporite sequence, in particular to assess mineral and elemental variations which provide small-scale regions of enhanced habitability. The instruments used were the Panoramic Camera emulator, Close-Up Imager, Raman spectrometer, Small Planetary Linear Impulse Tool, Ultrasonic drill and handheld X-ray diffraction (XRD). We present science results from the analog research and show that these instruments can be used to investigate in situ the geological context and mineralogical variations of a deep subsurface environment, and thus habitability, from millimetre to metre scales. We also show that these instruments are complementary. For example, the identification of primary evaporite minerals such as NaCl and KCl, which are difficult to detect by portable Raman spectrometers, can be accomplished with XRD. By contrast, Raman is highly effective at locating and detecting mineral inclusions in primary evaporite minerals. MINAR demonstrates the effective use of a deep subsurface environment for planetary instrument development, understanding the habitability of extreme deep subsurface environments on Earth and other planetary bodies, and advancing the use of space technology in economic mining

    AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    Get PDF
    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space

    Ferroic multipolar order and disorder in cyanoelpasolite molecular perovskites

    Get PDF
    We use a combination of variable-temperature high-resolution synchrotron X-ray powder diffraction measurements and Monte Carlo simulations to characterize the evolution of two different types of ferroic multipolar order in a series of cyanoelpasolite molecular perovskites. We show that ferroquadrupolar order in [C3N2H5]2Rb[Co(CN)6] is a first-order process that is well described by a four-state Potts model on the simple cubic lattice. Likewise, ferrooctupolar order in [NMe4]2B[Co(CN)6] (B = K, Rb, Cs) also emerges via a first-order transition that now corresponds to a six-state Potts model. Hence, for these particular cases, the dominant symmetry breaking mechanisms are well understood in terms of simple statistical mechanical models. By varying composition, we find that the effective coupling between multipolar degrees of freedom-and hence the temperature at which ferromultipolar order emerges-can be tuned in a chemically sensible manner. This article is part of the theme issue 'Mineralomimesis: natural and synthetic frameworks in science and technology'

    Shared midgut binding sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa proteins from Bacillus thuringiensis in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda

    Get PDF
    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case
    corecore