189 research outputs found

    Physicochemical characterisation of gold, silica and silver nanoparticles in water and in serum-containing cell culture media

    Get PDF
    This report presents the results from a study organised under the coordination of JRC as part of a project aiming at the adaptation of the in vitro micronucleus test (Test Guideline 487) for the assessment of manufactured NMs. The aim of the first step of the project was to evaluate the physicochemical characterisation of selected representative nanomaterials (5 nm gold, 30 nm gold, 22 nm silica, 30 nm citrate and 30 nm PVP stabilised silver nanoparticles) in pure water and in different complete culture media. The results of the study show that using a combination of different characterisation techniques is important to providing reliable information about the agglomeration behaviour of the tested nanoparticles in complete cell culture media (CCM). Most of the materials exhibited mild agglomeration in serum containing CCM. Only the PVP functionalised silver nanoparticles showed a size distribution change in all of the culture media that is so small that it could be attributed to solely protein adsorption without notable agglomeration. Silica nanoparticles were found to be the most sensitive to interaction with serum containing CCM, showing massive concentration and time dependent agglomeration strongly affected by the CCM composition. Extensive agglomeration might lead also to the accelerated sedimentation of the particles changing drastically the true, effective dose that the cells will receive under in vitro conditions1, 2. Thus, it has to be investigated in more detail and taken in account when designing in vitro experiments in the next phase of the project.JRC.F.2-Consumer Products Safet

    Dispersion Behaviour of Silica Nanoparticles in Biological Media and Its Influence on Cellular Uptake

    Get PDF
    Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays.JRC.I.4-Nanobioscience

    Modulation of surface bio-functionality by using gold nanostructures on protein repellent surfaces

    Get PDF
    The integration of gold nanoparticles (Au NPs) or nanostructures with special optical properties on solid surfaces has become a major research topic in the field of nanobiotechnology in particular for the development of new generation of multifunctional bioanalytical platforms. This has led to considerable research efforts for developing quick and direct nanofabrication methods capable of producing well-ordered 2D nanostructured arrays with tunable morphological, chemical and optical properties. In this paper, we propose a simple and fast nanofabrication method enabling the creation of Au NPs patterns on a non-adhesive and cell repellent plasma-deposited poly(ethyleneoxide) (PEO-like) coating. The immobilization of Au NPs on PEO-like coatings does not require any prior chemical modifications and is achieved by a straightforward and stable self-assembly technique. By varying the size and the concentration of the Au NPs it is possible to control the Au NPs density and spatial distribution on the PEO-like coated surface with direct effects on the bio-functionality of the surface. These nanostructured surfaces have been tested for protein bio-recognition analysis and as a cell culture platform. The developed nanostructured platform has many potential applications in the field of protein-nanoparticle and cell-nanoparticle interaction studies, nanotoxicology and bioengineering.JRC.I.4-Nanobioscience

    Raman spectroscopy of gallium ion irradiated graphene

    Get PDF
    The successful integration of graphene in future technologies, such as filtration and nanoelectronics, depends on the ability to introduce controlled nanostructured defects in graphene. In this work, Raman spectroscopy is used to investigate the induction of disorder in graphene via gallium ion beam bombardment. Two configurations of CVD-grown graphene samples are used: (i) graphene supported on a Si/SiO2 substrate, and (ii) graphene suspended on porous TEM grids. It is observed that the supported graphene experiences more damage in response to lower beam doses than suspended graphene. This phenomenon is attributed to the behaviour of the energetic ions impinging the sample. In suspended graphene, the ions pass through the graphene membrane once and disperse to the atmosphere, while in supported graphene, the ions embed themselves in the substrate causing swelling and backscattering events, hence increasing the induced disorder. In supported graphene, the ratio between the Gaussian D and G peaks attributed to amorphous carbon, and the Lorentzian D and G peaks attributed to graphene, (IDG/IDL) and (IGG/IGL), are suggested to be used to quantify the degree of amorphization. The results are relevant to the development of nanostructured graphene-based filtration or desalination membranes, as well as for graphene-based nanoelectronics.JRC.F.2-Consumer Products Safet

    Determination of the structure and morphology of gold nanoparticle–HSA protein complexes

    Get PDF
    A method to measure the number of proteins bound to each nanoparticle and changes in the protein structure is reported

    Inter-laboratory comparison on the determination of the hydrophobicity index of nanomaterials through an affinity measurement

    Get PDF
    Hydrophobicity is a physico-chemical property that may influence the fate of nanomaterials in the environment and biological matrices. A method to characterise the hydrophobicity of nanomaterials was developed at the JRC and proposed as an OECD Test Guideline. In this context, the JRC led an Inter-laboratory comparison (ILC) aiming to assess the transferability of the standard operating procedure. The method is based on the measurement of the affinity of nanomaterials to engineered collectors. Nine laboratories participated to this ILC. The variability of the measurements and the reproducibility of the calculation of the Hydrophobicity Index were assessed according to the International Standard ISO 5725-2. Accordingly, with |Z-scores| < 2 for all the participants, the determination of the Hydrophobicity Index was considered satisfactory. The method was adopted by the OECD Working Party of the National Coordinators of the Test Guidelines Programme in April 2023 as Test Guideline 126.JRC.F.2 - Technologies for Healt

    Suppressing indoor pathogen transmission: A Technology Foresight study

    Get PDF
    Airborne transmission is considered one of the most common ways of transmitting respiratory viruses. The reach of airborne pathogens and persistence of aerosolized particles suspended in the air are a significant concern for the spread of pandemic and seasonal respiratory diseases. This is particularly relevant in indoor spaces where most respiratory infections occur. Controlling the transmission of airborne pathogens is therefore a cornerstone of public health efforts to manage and prevent the spread of infectious diseases, ensuring safety and health for individuals and communities. Technologies that allow such control are essential to address the challenge. This report is the output of a comprehensive study which evaluates the potential of the current technology landscape for suppressing indoor airborne pathogen transmission. The analysis outlines two main technology groups: those for detecting airborne pathogens and those for decontaminating air and surfaces. It identifies several key technologies in each group, and assesses their maturity, impact, and potential priority for funding. It outlines the drivers, enablers, and barriers for the development and adoption of these technologies, providing insights into factors that may influence their future implementation. It also explores forward-looking perspectives with scenarios for future health crises and offers recommendations for policy and research to address the challenges and leverage the opportunities in the field of indoor air quality.JRC.F.2 - Technologies for Healt
    corecore