3,319 research outputs found
Il consumo di suolo in Italia - Edizione 2015
Nel nostro Paese si continua a consumare suolo e la seconda edizione del Rapporto ISPRA fornisce un quadro completo sull’avanzata della copertura artificiale del nostro territorio.
Il Rapporto sul consumo di suolo in Italia 2015 integra nuove informazioni, aggiorna le precedenti stime sulla base di dati a maggiore risoluzione e completa il quadro nazionale con specifici indicatori per regioni, province e comuni.
Sono, inoltre, approfonditi alcuni aspetti che caratterizzano le dinamiche di espansione urbana e di trasformazione del paesaggio a scala nazionale e locale con riferimento alla fascia costiera, alle aree montane, ai corpi idrici, alle aree protette, alle aree a pericolosità idraulica, all’uso del suolo, alle forme e alle densità di urbanizzazione, ai fenomeni dello sprawl urbano, della frammentazione, della dispersione e della diffusione insediativa
An Introduction to EEG Source Analysis with an illustration of a study on Error-Related Potentials
International audienceOver the last twenty years blind source separation (BSS) has become a fundamental signal processing tool in the study of human electroencephalography (EEG), other biological data, as well as in many other signal processing domains such as speech, images, geophysics and wireless communication (Comon and Jutten, 2010). Without relying on head modeling BSS aims at estimating both the waveform and the scalp spatial pattern of the intracranial dipolar current responsible of the observed EEG, increasing the sensitivity and specificity of the signal received from the electrodes on the scalp. This chapter begins with a short review of brain volume conduction theory, demonstrating that BSS modeling is grounded on current physiological knowledge. We then illustrate a general BSS scheme requiring the estimation of second-order statistics (SOS) only. A simple and efficient implementation based on the approximate joint diagonalization of covariance matrices (AJDC) is described. The method operates in the same way in the time or frequency domain (or both at the same time) and is capable of modeling explicitly physiological and experimental source of variations with remarkable flexibility. Finally, we provide a specific example illustrating the analysis of a new experimental study on error-related potentials
State space modelling and data analysis exercises in LISA Pathfinder
LISA Pathfinder is a mission planned by the European Space Agency to test the
key technologies that will allow the detection of gravitational waves in space.
The instrument on-board, the LISA Technology package, will undergo an
exhaustive campaign of calibrations and noise characterisation campaigns in
order to fully describe the noise model. Data analysis plays an important role
in the mission and for that reason the data analysis team has been developing a
toolbox which contains all the functionalities required during operations. In
this contribution we give an overview of recent activities, focusing on the
improvements in the modelling of the instrument and in the data analysis
campaigns performed both with real and simulated data.Comment: Plenary talk presented at the 9th International LISA Symposium, 21-25
May 2012, Pari
Augmented Method to Improve Thermal Data for the Figure Drift Thermal Distortion Predictions of the JWST OTIS Cryogenic Vacuum Test
The JWST Optical Telescope Element (OTE) assembly is the largest optically stable infrared-optimized telescope currently being manufactured and assembled, and is scheduled for launch in 2018. The JWST OTE, including the 18 segment primary mirror, secondary mirror, and the Aft Optics Subsystem (AOS) are designed to be passively cooled and operate near 45K. These optical elements are supported by a complex composite backplane structure. As a part of the structural distortion model validation efforts, a series of tests are planned during the cryogenic vacuum test of the fully integrated flight hardware at NASA JSC Chamber A. The successful ends to the thermal-distortion phases are heavily dependent on the accurate temperature knowledge of the OTE structural members. However, the current temperature sensor allocations during the cryo-vac test may not have sufficient fidelity to provide accurate knowledge of the temperature distributions within the composite structure. A method based on an inverse distance relationship among the sensors and thermal model nodes was developed to improve the thermal data provided for the nanometer scale WaveFront Error (WFE) predictions. The Linear Distance Weighted Interpolation (LDWI) method was developed to augment the thermal model predictions based on the sparse sensor information. This paper will encompass the development of the LDWI method using the test data from the earlier pathfinder cryo-vac tests, and the results of the notional and as tested WFE predictions from the structural finite element model cases to characterize the accuracies of this LDWI method
Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2 ± 0.1 fm s−2/√Hz or (0.54 ± 0.01) × 10−15 g/√Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8 ± 0.3) fm/√Hz, about 2 orders of magnitude better than requirements. At f ≤ 0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/√Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave
observatory with a sensitivity close to what was originally foreseen for LISA
Sub-Femto- g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results
We report the first results of the LISA Pathfinder in-flight experiment. The results demonstrate that two free-falling reference test masses, such as those needed for a space-based gravitational wave observatory like LISA, can be put in free fall with a relative acceleration noise with a square root of the power spectral density of 5.2±0.1 fm s−2/Hz, or (0.54±0.01)×10−15 g/Hz, with g the standard gravity, for frequencies between 0.7 and 20 mHz. This value is lower than the LISA Pathfinder requirement by more than a factor 5 and within a factor 1.25 of the requirement for the LISA mission, and is compatible with Brownian noise from viscous damping due to the residual gas surrounding the test masses. Above 60 mHz the acceleration noise is dominated by interferometer displacement readout noise at a level of (34.8±0.3) fm/Hz, about 2 orders of magnitude better than requirements. At f≤0.5 mHz we observe a low-frequency tail that stays below 12 fm s−2/Hz down to 0.1 mHz. This performance would allow for a space-based gravitational wave observatory with a sensitivity close to what was originally foreseen for LISA.CNES 1316634/CNRS 103747UnivEarthS Labex program/ANR-10-LABX-0023UnivEarthS Labex program/ANR-11-IDEX-0005-02DLRFederal Ministry for Economic Affairs and Energy/FKZ 50OQ0501Federal Ministry for Economic Affairs and Energy/FKZ 50OQ1601Agenzia Spaziale ItalianaInstituto Nazionale di Fisica NucleareAYA2010-15709 (MICINN)ESP2013-47637-P (MINECO)ESP2015-67234-P (MINECO)Fundacion General CSICSwiss Space Office (SSO)Swiss National Science FoundationUnited Kingdom Space Agency (UKSA)University of GlasgowUniversity of BirminghamImperial CollegeScottish Universities Physics Alliance (SUPA)U.S. National Aeronautics and Space Administration (NASA
Modeling of light pipes for the optimal disposition in buildings
A light pipe is an excellent solution to transport and distribute daylight into environments without or with little lighting, guaranteeing comfort inside the rooms. As stated in the literature, the evaluation of the performances of light pipes presents numerous complexities, making the work very difficult for technicians and designers. This study is aimed to present a methodology that is able to identify the potential of light pipes using indices such as daylight autonomy (DA), continuous daylight autonomy (DAc), and useful daylight illuminance (UDI). This paper presents an analysis of daylight obtained by several configurations of simple models of light pipes installed into a 5
7 5 m plant area room. All simulations are carried out in a DAYSIM environment, which allows calculating the annual availability of daylight based on a RADIANCE raytracer backward. Several daylight conditions were analyzed for different light pipe configurations, considering different pipe lengths and a variable number of light pipes. The light pipes are tested also in the horizontal position, for different orientations. The results of all the combinations were compared with the performances of a window with dimensions equal to 1/8 of the internal surface, which was in accordance with the minimum value to be guaranteed by the Italian Regulation (D.M. 5 July 1975 n. 190) for different orientations. The results indicated a difference in daylight distribution, showing a strong correlation between the percentage levels of DA and DAc with the length and number of pipes, during different periods of the year. The simulated model is strongly influenced by the aspect ratio (R = diameter/length). The results show that the illuminance levels decrease drastically, increasing the length
A new device hypothesis for water extraction from air and basic air condition system in developing countries
This work proposes a new device for air treatment with dehumidification and water recovery/storage, with possible mitigation of indoor environmental conditions. The system is based on Peltier cells coupled with a horizontal earth‐to‐air heat exchanger, it is proposed as an easy‐to-implement alternative to the heat pumps and air handling units currently used on the market, in terms of cost, ease of installation, and maintenance. The process provides the water collection from the cooling of warm‐humid air through a process that leads to condensation and water vapor separation. The airflow generated by a fan splits into two dual flows that lap the two surfaces of the Peltier cells, one flow laps the cold surfaces undergoing sensible, latent cooling with dehumidification; the other flow laps the hot surfaces and heats up. The airflow undergoes thermal pre‐treatment through the underground horizontal geothermal pipe that precedes the Peltier cells. In the water storage tank, which also works as a mixing chamber, the two air streams are mixed to regulate the outlet temperature. The system can be stand‐alone if equipped with a photovoltaic panel and a micro wind turbine, able to be used in places where electricity is absent. The system, with different configurations, is modeled in the African city Kigali, in Rwanda
- …
