8,036 research outputs found

    Population stability: regulating size in the presence of an adversary

    Full text link
    We introduce a new coordination problem in distributed computing that we call the population stability problem. A system of agents each with limited memory and communication, as well as the ability to replicate and self-destruct, is subjected to attacks by a worst-case adversary that can at a bounded rate (1) delete agents chosen arbitrarily and (2) insert additional agents with arbitrary initial state into the system. The goal is perpetually to maintain a population whose size is within a constant factor of the target size NN. The problem is inspired by the ability of complex biological systems composed of a multitude of memory-limited individual cells to maintain a stable population size in an adverse environment. Such biological mechanisms allow organisms to heal after trauma or to recover from excessive cell proliferation caused by inflammation, disease, or normal development. We present a population stability protocol in a communication model that is a synchronous variant of the population model of Angluin et al. In each round, pairs of agents selected at random meet and exchange messages, where at least a constant fraction of agents is matched in each round. Our protocol uses three-bit messages and ω(log2N)\omega(\log^2 N) states per agent. We emphasize that our protocol can handle an adversary that can both insert and delete agents, a setting in which existing approximate counting techniques do not seem to apply. The protocol relies on a novel coloring strategy in which the population size is encoded in the variance of the distribution of colors. Individual agents can locally obtain a weak estimate of the population size by sampling from the distribution, and make individual decisions that robustly maintain a stable global population size

    Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status

    Get PDF
    Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration

    A liquid crystalline copper phthalocyanine derivative for high performance organic thin film transistors

    Get PDF
    This journal is © The Royal Society of Chemistry 2012Bottom-gate, bottom-contact organic thin film transistors (OTFTs) were fabricated using solvent soluble copper 1,4,8,11,15,18,22,25-octakis(hexyl)phthalocyanine as the active semiconductor layer. The compound was deposited as 70 nm thick spin-coated films onto gold source–drain electrodes supported on octadecyltrichlorosilane treated 250 nm thick SiO2 gate insulators. The performance of the OTFTs was optimised by investigating the effects of vacuum annealing of the films at temperatures between 50 0C and 200 0C, a range that included the thermotropic mesophase of the bulk material. These effects were monitored by ultraviolet-visible absorption spectroscopy, atomic force microscopy and XRD measurements. Device performance was shown to be dependent upon the annealing temperature due to structural changes of the film. Devices heat treated at 100 0C under vacuum (≥10-7 mbar) were found to exhibit the highest field-effect mobility, 0.7 cm2 V^-1 s^-1, with an on–off current modulation ratio of~107, a reduced threshold voltage of 2.0 V and a sub-threshold swing of 1.11 V per decade.UK Technology Strategy Board (Project no: TP/6/EPH/6/S/K2536J) and UK National Measurement System (Project IRD C02 ‘‘Plastic Electronics’’, 2008–2011)

    Ways to constrain neutron star equation of state models using relativistic disc lines

    Full text link
    Relativistic spectral lines from the accretion disc of a neutron star low-mass X-ray binary can be modelled to infer the disc inner edge radius. A small value of this radius tentatively implies that the disc terminates either at the neutron star hard surface, or at the innermost stable circular orbit (ISCO). Therefore an inferred disc inner edge radius either provides the stellar radius, or can directly constrain stellar equation of state (EoS) models using the theoretically computed ISCO radius for the spacetime of a rapidly spinning neutron star. However, this procedure requires numerical computation of stellar and ISCO radii for various EoS models and neutron star configurations using an appropriate rapidly spinning stellar spacetime. We have fully general relativistically calculated about 16000 stable neutron star structures to explore and establish the above mentioned procedure, and to show that the Kerr spacetime is inadequate for this purpose. Our work systematically studies the methods to constrain EoS models using relativistic disc lines, and will motivate future X-ray astronomy instruments.Comment: 6 pages, 9 figures, published in MNRA

    New ephemeris of the ADC source 2A 1822-371: a stable orbital-period derivative over 30 years

    Get PDF
    We report on a timing of the eclipse arrival times of the low mass X-ray binary and X-ray pulsar 2A 1822-371 performed using all available observations of the Proportional Counter Array on board the Rossi X-ray Timing Explorer, XMM-Newton pn, and Chandra. These observations span the years from 1996 to 2008. Combining these eclipse arrival time measurements with those already available covering the period from 1977 to 1996, we obtain an orbital solution valid for more than thirty years. The time delays calculated with respect to a constant orbital period model show a clear parabolic trend, implying that the orbital period in this source constantly increases with time at a rate P˙orb=1.50(7)×1010\dot P_orb = 1.50(7) \times 10^{-10} s/s. This is 3 orders of magnitude larger than what is expected from conservative mass transfer driven by magnetic braking and gravitational radiation. From the conservation of the angular momentum of the system we find that to explain the high and positive value of the orbital period derivative the mass transfer rate must not be less than 3 times the Eddington limit for a neutron star, suggesting that the mass transfer has to be partially non-conservative. With the hypothesis that the neutron star accretes at the Eddington limit we find a consistent solution in which at least 70% of the transferred mass has to be expelled from the system.Comment: Published by A&

    Long range absorption in the scattering of 6He on 208Pb and 197Au at 27 MeV

    Get PDF
    Quasi-elastic scattering of 6He at E_lab=27 MeV from 197Au has been measured in the angular range of 6-72 degrees in the laboratory system employing LEDA and LAMP detection systems. These data, along with previously analysed data of 6He + 208Pb at the same energy, are analyzed using Optical Model calculations. The role of Coulomb dipole polarizability has been investigated. Large imaginary diffuseness parameters are required to fit the data. This result is an evidence for long range absorption mechanisms in 6He induced reactions.Comment: 10 pages, 10 figures, minor corrections. To appear in Nucl. Phys.

    Small molecule induced reactivation of mutant p53 in cancer cells

    Get PDF
    The p53 cancer mutant Y220C is an excellent paradigm for rescuing the function of conformationally unstable p53 mutants because it has a unique surface crevice that can be targeted by small-molecule stabilizers. Here, we have identified a compound, PK7088, which is active in vitro: PK7088 bound to the mutant with a dissociation constant of 140 μM and raised its melting temperature, and we have determined the binding mode of a close structural analogue by X-ray crystallography. We showed that PK7088 is biologically active in cancer cells carrying the Y220C mutant by a battery of tests. PK7088 increased the amount of folded mutant protein with wild-type conformation, as monitored by immunofluorescence, and restored its transcriptional functions. It induced p53-Y220C-dependent growth inhibition, cell-cycle arrest and apoptosis. Most notably, PK7088 increased the expression levels of p21 and the proapoptotic NOXA protein. PK7088 worked synergistically with Nutlin-3 on up-regulating p21 expression, whereas Nutlin-3 on its own had no effect, consistent with its mechanism of action. PK7088 also restored non-transcriptional apoptotic functions of p53 by triggering nuclear export of BAX to the mitochondria. We suggest a set of criteria for assigning activation of p53

    CO2 Ice toward Low-luminosity, Embedded Protostars: Evidence for Episodic Mass Accretion via Chemical History

    Get PDF
    We present Spitzer IRS spectroscopy of CO2 ice bending mode spectra at 15.2 micrometer toward 19 young stellar objects with luminosity lower than 1 Lsun (3 with luminosity lower than 0.1 Lsun). Ice on dust grain surfaces can encode the history of heating because pure CO2 ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1 Lsun do not provide the conditions needed to produce pure CO2 ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO2 ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO2 component, traced by the presence of a characteristic band splitting in the 15.2 micrometer bending mode. About half of the sources (9 out of 19) in the low luminosity sample have evidence for pure CO2 ice, and six of these have significant double-peaked features, which are very strong evidence of pure CO2 ice. The presence of the pure CO2 ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO2 ice is converted to pure CO2 ice during each high luminosity phase, explains the presence of pure CO2 ice, the total amount of CO2 ice, and the observed residual C18O gas.Comment: Accepted for publication in ApJ, total 24 pages, 14 figure

    Long range effects on the optical model of 6He around the Coulomb barrier

    Full text link
    We present an optical model (OM) analysis of the elastic scattering data of the reactions 6He+27Al and 6He+208Pb at incident energies around the Coulomb barrier. The bare part of the optical potential is constructed microscopically by means of a double folding procedure, using the Sao Paulo prescription without any renormalization. This bare interaction is supplemented with a Coulomb dipole polarization (CDP) potential, which takes into account the effect of the dipole Coulomb interaction. For this CDP potential, we use an analytical formula derived from the semiclassical theory of Coulomb excitation. The rest of the optical potential is parametrized in terms of Woods-Saxon shapes. In the 6He+208Pb case, the analysis confirms the presence of long range components, in agreement with previous works. Four-body Continuum-Discretized Coupled-Channels calculations have been performed in order to better understand the features of the optical potentials found in the OM analysis. This study searches to elucidate some aspects of the optical potential of weakly bound systems, such as the dispersion relation and the long range (attractive and absorptive) mechanisms.Comment: Accepted in Nucl. Phys. A; 26 pages, 8 figures, 6 tables

    The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

    Get PDF
    We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron temperature, kT_e=51(+6,-4) keV, is rather high, while the optical depth (tau=1.34(+0.03,-0.06)) is moderate. The energy dependence of the pulsed fraction supports the interpretation of the cooler thermal component as coming from the accretion disc, and indicates that the Comptonizing plasma surrounds the hot spots on the NS surface, which provide the seed photons. Signatures of reflection, such as a broadened iron K-alpha emission line and a Compton hump at 30 keV ca., are also detected. We derive from the smearing of the reflection component an inner disc radius of ~> 40 km for a 1.4 Msun neutron star, and an inclination between 38{\deg} and 68{\deg}. XMM-Newton also observed two type-I X-ray bursts, probably ignited in a nearly pure helium environment. No photospheric radius expansion is observed, thus leading to an upper limit on the distance to the source of 10 kpc. A lower limit of 6.5 kpc can be also set if it is assumed that emission during the decaying part of the burst involves the whole neutron star surface. Pulsations observed during the burst decay are compatible with being phase locked, and have a similar amplitude, than pre-burst pulsations.Comment: 16 pages, 10 figures, 4 tables, accepted for publication in MNRA
    corecore