273 research outputs found

    Measuring primordial gravitational waves from CMB B-modes in cosmologies with generalized expansion histories

    Full text link
    We evaluate our capability to constrain the abundance of primordial tensor perturbations in cosmologies with generalized expansion histories in the epoch of cosmic acceleration. Forthcoming satellite and sub-orbital experiments probing polarization in the CMB are expected to measure the B-mode power in CMB polarization, coming from PGWs on the degree scale, as well as gravitational lensing on arcmin scales; the latter is the main competitor for the measurement of PGWs, and is directly affected by the underlying expansion history, determined by the presence of a DE component. In particular, we consider early DE possible scenarios, in which the expansion history is substantially modified at the epoch in which the CMB lensing is most relevant. We show that the introduction of a parametrized DE may induce a variation as large as 30% in the ratio of the power of lensing and PGWs on the degree scale. We find that adopting the nominal specifications of upcoming satellite measurements the constraining power on PGWs is weakened by the inclusion of the extra degrees of freedom, resulting in a reduction of about 10% of the upper limits on r in fiducial models with no GWs, as well as a comparable increase in the error bars in models with non-zero r. Moreover, we find that the inclusion of sub-orbital CMB experiments, capable of mapping the B-mode power up to the angular scales affected by lensing, can restore the forecasted performances with a cosmological constant. Finally, we show how the combination of CMB data with Type Ia SNe, BAO and Hubble constant allows to constrain simultaneously r and the DE quantities in the parametrization we consider, consisting of present abundance and first redshift derivative of the energy density. We compare this study with results obtained using the forecasted lensing potential measurement precision from CMB satellite observations, finding consistent results.Comment: 17 pages, 9 figures, accepted for publication by JCAP. Modified version after the referee's comment

    Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios

    Full text link
    We present strong bounds on the sum of three active neutrino masses (mν\sum m_{\nu}) in various cosmological models. We use the following baseline datasets: CMB temperature data from Planck 2015, BAO measurements from SDSS-III BOSS DR12, the newly released SNe Ia dataset from Pantheon Sample, and a prior on the optical depth to reionization from 2016 Planck Intermediate results. We constrain cosmological parameters in ΛCDM\Lambda CDM model with 3 massive active neutrinos. For this ΛCDM+mν\Lambda CDM+\sum m_{\nu} model we find a upper bound of mν<\sum m_{\nu} < 0.152 eV at 95%\% C.L. Adding the high-ll polarization data from Planck strengthens this bound to mν<\sum m_{\nu} < 0.118 eV, which is very close to the minimum required mass of mν\sum m_{\nu} \simeq 0.1 eV for inverted hierarchy. This bound is reduced to mν<\sum m_{\nu} < 0.110 eV when we also vary r, the tensor to scalar ratio (ΛCDM+r+mν\Lambda CDM+r+\sum m_{\nu} model), and add an additional dataset, BK14, the latest data released from the Bicep-Keck collaboration. This bound is further reduced to mν<\sum m_{\nu} < 0.101 eV in a cosmology with non-phantom dynamical dark energy (w0waCDM+mνw_0 w_a CDM+\sum m_{\nu} model with w(z)1w(z)\geq -1 for all zz). Considering the w0waCDM+r+mνw_0 w_a CDM+r+\sum m_{\nu} model and adding the BK14 data again, the bound can be even further reduced to mν<\sum m_{\nu} < 0.093 eV. For the w0waCDM+mνw_0 w_a CDM+\sum m_{\nu} model without any constraint on w(z)w(z), the bounds however relax to mν<\sum m_{\nu} < 0.276 eV. Adding a prior on the Hubble constant (H0=73.24±1.74H_0 = 73.24\pm 1.74 km/sec/Mpc) from Hubble Space Telescope (HST), the above mentioned bounds further improve to mν<\sum m_{\nu} < 0.117 eV, 0.091 eV, 0.085 eV, 0.082 eV, 0.078 eV and 0.247 eV respectively. This substantial improvement is mostly driven by a more than 3σ\sigma tension between Planck 2015 and HST measurements of H0H_0 and should be taken cautiously. (abstract abridged)Comment: 31 pages, 19 figures, matches published version in JCA

    Non-Gaussian isocurvature perturbations in dark radiation

    Full text link
    We study non-Gaussian properties of the isocurvature perturbations in the dark radiation, which consists of the active neutrinos and extra light species, if exist. We first derive expressions for the bispectra of primordial perturbations which are mixtures of curvature and dark radiation isocurvature perturbations. We also discuss CMB bispectra produced in our model and forecast CMB constraints on the nonlinearity parameters based on the Fisher matrix analysis. Some concrete particle physics motivated models are presented in which large isocurvature perturbations in extra light species and/or the neutrino density isocurvature perturbations as well as their non-Gaussianities may be generated. Thus detections of non-Gaussianity in the dark radiation isocurvature perturbation will give us an opportunity to identify the origin of extra light species and lepton asymmetry.Comment: 32 pages, 7 figure

    Exploring cosmic origins with CORE : Gravitational lensing of the CMB

    Get PDF
    Lensing of the cosmic microwave background (CMB) is now a well-developed probe of the clustering of the large-scale mass distribution over a broad range of redshifts. By exploiting the non-Gaussian imprints of lensing in the polarization of the CMB, the CORE mission will allow production of a clean map of the lensing deflections over nearly the full-sky. The number of high-SAN modes in this map will exceed current CMB lensing maps by a factor of 40, and the measurement will be sample-variance limited on all scales where linear theory is valid. Here, we summarise this mission product and discuss the science that will follow from its power spectrum and the cross-correlation with other clustering data. For example, the summed mass of neutrinos will be determined to an accuracy of 17 meV combining CORE lensing and CMB two-point information with contemporaneous measurements of the baryon acoustic oscillation feature in the clustering of galaxies, three times smaller than the minimum total mass allowed by neutrino oscillation measurements. Lensing has applications across many other science goals of CORE, including the search for B-mode polarization from primordial gravitational waves. Here, lens-induced B-modes will dominate over instrument noise, limiting constraints on the power spectrum amplitude of primordial gravitational waves. With lensing reconstructed by CORE, one can "delens" the observed polarization internally, reducing the lensing B-mode power by 60 %. This can be improved to 70 % by combining lensing and measurements of the cosmic infrared background from CORE, leading to an improvement of a factor of 2.5 in the error on the amplitude of primordial gravitational waves compared to no delensing (in the null hypothesis of no primordial B-modes). Lensing measurements from CORE will allow calibration of the halo masses of the tens of thousands of galaxy clusters that it will find, with constraints dominated by the clean polarization-based estimators. The 19 frequency channels proposed for CORE will allow accurate removal of Galactic emission from CMB maps. We present initial findings that show that residual Galactic foreground contamination will not be a significant source of bias for lensing power spectrum measurements with CORE.Peer reviewe

    Impact on the tensor-to-scalar ratio of incorrect Galactic foreground modelling

    Full text link
    A key goal of many Cosmic Microwave Background experiments is the detection of gravitational waves, through their B-mode polarization signal at large scales. To extract such a signal requires modelling contamination from the Galaxy. Using the Planck experiment as an example, we investigate the impact of incorrectly modelling foregrounds on estimates of the polarized CMB, quantified by the bias in tensor-to-scalar ratio r, and optical depth tau. We use a Bayesian parameter estimation method to estimate the CMB, synchrotron, and thermal dust components from simulated observations spanning 30-353 GHz, starting from a model that fits the simulated data, returning r<0.03 at 95% confidence for an r=0 model, and r=0.09+-0.03 for an r=0.1 model. We then introduce a set of mismatches between the simulated data and assumed model. Including a curvature of the synchrotron spectral index with frequency, but assuming a power-law model, can bias r high by ~1-sigma (delta r ~ 0.03). A similar bias is seen for thermal dust with a modified black-body frequency dependence, incorrectly modelled as a power-law. If too much freedom is allowed in the model, for example fitting for spectral indices in 3 degree pixels over the sky with physically reasonable priors, we find r can be biased up to ~3-sigma high by effectively setting the indices to the wrong values. Increasing the signal-to-noise ratio by reducing parameters, or adding additional foreground data, reduces the bias. We also find that neglecting a 1% polarized free-free or spinning dust component has a negligible effect on r. These tests highlight the importance of modelling the foregrounds in a way that allows for sufficient complexity, while minimizing the number of free parameters.Comment: 11 pages, 7 figures, submitted to MNRA

    Radio to infrared spectra of late-type galaxies with Planck and WMAP data

    Full text link
    We use the Planck Early Release Compact Source Catalogue combined with WMAP and other archival measurements to construct continuum spectra of three nearby dusty star-forming galaxies: Messier 82, NGC 253 and NGC 4945. We carry out a least-squares fit to the spectra using a combination of simple synchrotron, free-free and thermal dust models, and look for evidence of anomalous microwave emission (AME). We find that the radio spectra of all three galaxies are consistent with steep spectrum synchrotron emission, with a significant amount of free-free emission required to explain the Planck and WMAP data points in the frequency range 30-150 GHz. This brings the star-formation rate based on free-free emission into better agreement with that from the non-thermal emission. We place limits on the presence of AME in these galaxies, finding that it is lower than expectations based on the ratio of far infrared to AME from the Galaxy. Nevertheless, the shape of the spectrum of NGC 4945 hints at the presence of AME with a peak around 30 GHz. Future Planck data will let us look more closely at these galaxies, as well as to extend the analysis to many more galaxies.Comment: 5 pages, 1 figure (6 panels), 1 table. Submitted to MNRAS letter

    Exploring cosmic origins with CORE: Survey requirements and mission design

    Get PDF
    Future observations of cosmic microwave background (CMB) polarisation have the potential to answer some of the most fundamental questions of modern physics and cosmology, including: what physical process gave birth to the Universe we see today? What are the dark matter and dark energy that seem to constitute 95% of the energy density of the Universe? Do we need extensions to the standard model of particle physics and fundamental interactions? Is the ΛCDM cosmological scenario correct, or are we missing an essential piece of the puzzle? In this paper, we list the requirements for a future CMB polarisation survey addressing these scientific objectives, and discuss the design drivers of the COREmfive space mission proposed to ESA in answer to the 'M5' call for a medium-sized mission. The rationale and options, and the methodologies used to assess the mission's performance, are of interest to other future CMB mission design studies. COREmfive has 19 frequency channels, distributed over a broad frequency range, spanning the 60-600 GHz interval, to control astrophysical foreground emission. The angular resolution ranges from 2' to 18', and the aggregate CMB sensitivity is about 2 μKṡarcmin. The observations are made with a single integrated focal-plane instrument, consisting of an array of 2100 cryogenically-cooled, linearly-polarised detectors at the focus of a 1.2-m aperture cross-Dragone telescope. The mission is designed to minimise all sources of systematic effects, which must be controlled so that no more than 10‑4 of the intensity leaks into polarisation maps, and no more than about 1% of E-type polarisation leaks into B-type modes. COREmfive observes the sky from a large Lissajous orbit around the Sun-Earth L2 point on an orbit that offers stable observing conditions and avoids contamination from sidelobe pick-up of stray radiation originating from the Sun, Earth, and Moon. The entire sky is observed repeatedly during four years of continuous scanning, with a combination of three rotations of the spacecraft over different timescales. With about 50% of the sky covered every few days, this scan strategy provides the mitigation of systematic effects and the internal redundancy that are needed to convincingly extract the primordial B-mode signal on large angular scales, and check with adequate sensitivity the consistency of the observations in several independent data subsets. COREmfive is designed as a 'near-ultimate' CMB polarisation mission which, for optimal complementarity with ground-based observations, will perform the observations that are known to be essential to CMB polarisation science and cannot be obtained by any other means than a dedicated space mission. It will provide well-characterised, highly-redundant multi-frequency observations of polarisation at all the scales where foreground emission and cosmic variance dominate the final uncertainty for obtaining precision CMB science, as well as 2' angular resolution maps of high-frequency foreground emission in the 300-600 GHz frequency range, essential for complementarity with future ground-based observations with large telescopes that can observe the CMB with the same beamsize

    Planck Intermediate Results II: Comparison of Sunyaev-Zeldovich measurements from Planck and from the Arcminute Microkelvin Imager for 11 galaxy clusters

    Get PDF
    A comparison is presented of Sunyaev-Zeldovich measurements for 11 galaxy clusters as obtained by Planck and by the ground-based interferometer, the Arcminute Microkelvin Imager. Assuming a universal spherically-symmetric Generalised Navarro, Frenk & White (GNFW) model for the cluster gas pressure profile, we jointly constrain the integrated Compton-Y parameter (Y_500) and the scale radius (theta_500) of each cluster. Our resulting constraints in the Y_500-theta_500 2D parameter space derived from the two instruments overlap significantly for eight of the clusters, although, overall, there is a tendency for AMI to find the Sunyaev-Zeldovich signal to be smaller in angular size and fainter than Planck. Significant discrepancies exist for the three remaining clusters in the sample, namely A1413, A1914, and the newly-discovered Planck cluster PLCKESZ G139.59+24.18. The robustness of the analysis of both the Planck and AMI data is demonstrated through the use of detailed simulations, which also discount confusion from residual point (radio) sources and from diffuse astrophysical foregrounds as possible explanations for the discrepancies found. For a subset of our cluster sample, we have investigated the dependence of our results on the assumed pressure profile by repeating the analysis adopting the best-fitting GNFW profile shape which best matches X-ray observations. Adopting the best-fitting profile shape from the X-ray data does not, in general, resolve the discrepancies found in this subset of five clusters. Though based on a small sample, our results suggest that the adopted GNFW model may not be sufficiently flexible to describe clusters universally.Comment: update to metadata author list onl

    Large slow-roll corrections to the bispectrum of noncanonical inflation

    Full text link
    Nongaussian statistics are a powerful discriminant between inflationary models, particularly those with noncanonical kinetic terms. Focusing on theories where the Lagrangian is an arbitrary Lorentz-invariant function of a scalar field and its first derivatives, we review and extend the calculation of the observable three-point function. We compute the "next-order" slow-roll corrections to the bispectrum in closed form, and obtain quantitative estimates of their magnitude in DBI and power-law k-inflation. In the DBI case our results enable us to estimate corrections from the shape of the potential and the warp factor: these can be of order several tens of percent. We track the possible sources of large logarithms which can spoil ordinary perturbation theory, and use them to obtain a general formula for the scale dependence of the bispectrum. Our result satisfies the next-order version of Maldacena's consistency condition and an equivalent consistency condition for the scale dependence. We identify a new bispectrum shape available at next-order, which is similar to a shape encountered in Galileon models. If fNL is sufficiently large this shape may be independently detectable.Comment: v1: 37 pages, plus tables, figures and appendices. v2: supersedes version published in JCAP; some clarifications and more detailed comparison with earlier literature. All results unchanged. v3:improvements to some plots; text unchange
    corecore