504 research outputs found
A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2
SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built.
This 43 square arc-minute field-of-view instrument operates at two wavelengths
(850 and 450 microns) and has been installed on the James Clerk Maxwell
Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and
operational for general science since October 2011. This paper presents an
overview of the on-sky performance of the instrument during and since
commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450
and 850 micron arrays, with average yields of approximately 3400 bolometers at
each wavelength, will be shown. The observing modes of the instrument and the
on-sky calibration techniques are described. The culmination of these efforts
has resulted in a scientifically powerful mapping camera with sensitivities
that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron
in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.Comment: 18 pages, 15 figures.SPIE Conference series 8452, Millimetre,
Submillimetre and Far-infrared Detectors and Instrumentation for Astronomy VI
201
Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation
Many aspects of high-temperature gauge theories, such as the electroweak
baryon number violation rate, color conductivity, and the hard gluon damping
rate, have previously been understood only at leading logarithmic order (that
is, neglecting effects suppressed only by an inverse logarithm of the gauge
coupling). We discuss how to systematically go beyond leading logarithmic order
in the analysis of physical quantities. Specifically, we extend to
next-to-leading-log order (NLLO) the simple leading-log effective theory due to
Bodeker that describes non-perturbative color physics in hot non-Abelian
plasmas. A suitable scaling analysis is used to show that no new operators
enter the effective theory at next-to-leading-log order. However, a NLLO
calculation of the color conductivity is required, and we report the resulting
value. Our NLLO result for the color conductivity can be trivially combined
with previous numerical work by G. Moore to yield a NLLO result for the hot
electroweak baryon number violation rate.Comment: 20 pages, 1 figur
Accretion-related properties of Herbig Ae/Be stars. Comparison with T Tauris
We look for trends relating the mass accretion rate (Macc) and the stellar
ages (t), spectral energy distributions (SEDs), and disk masses (Mdisk) for a
sample of 38 HAeBe stars, comparing them to analogous correlations found for
classical T Tauri stars. Our goal is to shed light on the timescale and
physical processes that drive evolution of intermediate-mass pre-main sequence
objects.
Macc shows a dissipation timescale \tau = 1.3^{+1.0}_{-0.5} Myr from an
exponential law fit, while a power law yields Macc(t) \propto t^{-\eta}, with
\eta = 1.8^{+1.4}_{-0.7}. This result is based on our whole HAeBe sample (1-6
Msun), but the accretion rate decline most probably depends on smaller stellar
mass bins. The near-IR excess is higher and starts at shorter wavelengths (J
and H bands) for the strongest accretors. Active and passive disks are roughly
divided by 2 x 10^{-7} Msun/yr. The mid-IR excess and the SED shape from the
Meeus et al. classification are not correlated with Macc. We find Macc \propto
Mdisk^{1.1 +- 0.3}. Most stars in our sample with signs of inner dust
dissipation typically show accretion rates ten times lower and disk masses
three times smaller than the remaining objects.
The trends relating Macc with the near-IR excess and Mdisk extend those for T
Tauri stars, and are consistent with viscous disk models. The differences in
the inner gas dissipation timescale, and the relative position of the stars
with signs of inner dust clearing in the Macc-Mdisk plane, could be suggesting
a slightly faster evolution, and that a different process - such as
photoevaporation - plays a more relevant role in dissipating disks in the HAeBe
regime compared to T Tauri stars. Our conclusions must consider the mismatch
between the disk mass estimates from mm fluxes and the disk mass estimates from
accretion, which we also find in HAeBe stars.Comment: 11 pages, 7 figures, 1 appendix. Accepted in A&
Transcriptomic and Epigenetic Regulation of Disuse Atrophy and the Return to Activity in Skeletal Muscle
Physical inactivity and disuse are major contributors to age-related muscle loss. Denervation of skeletal muscle has been previously used as a model with which to investigate muscle atrophy following disuse. Although gene regulatory networks that control skeletal muscle atrophy after denervation have been established, the transcriptome in response to the recovery of muscle after disuse and the associated epigenetic mechanisms that may function to modulate gene expression during skeletal muscle atrophy or recovery have yet to be investigated. We report that silencing the tibialis anterior muscle in rats with tetrodotoxin (TTX)—administered to the common peroneal nerve—resulted in reductions in muscle mass of 7, 29, and 51% with corresponding reductions in muscle fiber cross-sectional area of 18, 42, and 69% after 3, 7, and 14 d of TTX, respectively. Of importance, 7 d of recovery, during which rodents resumed habitual physical activity, restored muscle mass from a reduction of 51% after 14 d TTX to a reduction of only 24% compared with sham control. Returning muscle mass to levels observed at 7 d TTX administration (29% reduction). Transcriptome-wide analysis demonstrated that 3714 genes were differentially expressed across all conditions at a significance of P ≤ 0.001 after disuse-induced atrophy. Of interest, after 7 d of recovery, the expression of genes that were most changed during TTX had returned to that of the sham control. The 20 most differentially expressed genes after microarray analysis were identified across all conditions and were cross-referenced with the most frequently occurring differentially expressed genes between conditions. This gene subset included myogenin (MyoG), Hdac4, Ampd3, Trim63 (MuRF1), and acetylcholine receptor subunit α1 (Chrna1). Transcript expression of these genes and Fboxo32 (MAFbx), because of its previously identified role in disuse atrophy together with Trim63 (MuRF1), were confirmed by real-time quantitative RT-PCR, and DNA methylation of their promoter regions was analyzed by PCR and pyrosequencing. MyoG, Trim63 (MuRF1), Fbxo32 (MAFbx), and Chrna1 demonstrated significantly decreased DNA methylation at key time points after disuse-induced atrophy that corresponded with significantly increased gene expression. Of importance, after TTX cessation and 7 d of recovery, there was a marked increase in the DNA methylation profiles of Trim63 (MuRF1) and Chrna1 back to control levels. This also corresponded with the return of gene expression in the recovery group back to baseline expression observed in sham-operated controls. To our knowledge, this is the first study to demonstrate that skeletal muscle atrophy in response to disuse is accompanied by dynamic epigenetic modifications that are associated with alterations in gene expression, and that these epigenetic modifications and gene expression profiles are reversible after skeletal muscle returns to normal activity
Uniform electron gases
We show that the traditional concept of the uniform electron gas (UEG) --- a
homogeneous system of finite density, consisting of an infinite number of
electrons in an infinite volume --- is inadequate to model the UEGs that arise
in finite systems. We argue that, in general, a UEG is characterized by at
least two parameters, \textit{viz.} the usual one-electron density parameter
and a new two-electron parameter . We outline a systematic
strategy to determine a new density functional across the
spectrum of possible and values.Comment: 8 pages, 2 figures, 5 table
Recommended from our members
Community Service: Editor pride and user preference on local newspaper websites
Armed with readily accessible online traffic logs that provide detailed information about the items users are selecting to view, editors are voicing concern about the potential effect on their own content decisions. Through a survey of local British newspaper editors, this article examines the overlap between user preferences, as suggested by assessments of website traffic, and content that editors identify as their best. Results are considered in the context of two related subsets of agenda-setting theory, as well as the sociological process of “making news.” The study finds overlap between broad categories of stories preferred by editors and users, but a considerable disconnect over the nature of the items within those categories
A Comparative Study of Deep Learning-Based Models for Object Detection in Remote Sensing Imagery
Object detection contributes significantly to advancing image interpretation and understanding. The advent of deep learning-based methods has significantly advanced this field. However, the distinctive characteristics of remote sensing images, including large directional variations, scale differences, and complex and cluttered backgrounds, pose considerable challenges for accurate target detection. In this work, we compare the detection accuracy and processing speed of several state-of-the-art models by detecting palm trees in optical satellite imagery. This work aims to explore how these models, adopted in many remote sensing applications, perform when applied to detect objects in overhead satellite images. Several models are selected from the single-stage and two-stage object detection families of techniques. Additionally, we use the timing results of the sliding window object detector to establish a baseline to compare different approaches. Our experiments demonstrate that two-stage detectors perform better in remote sensing contexts when detecting small, crowded objects, outperforming their single-stage counterparts. Future work includes extending this analysis to additional models, such as the multi-stage object detection family
A Sweet Talk: The Molecular Systems of Perineuronal Nets in Controlling Neuronal Communication
Perineuronal nets (PNNs) are mesh-like structures, composed of a hierarchical assembly of extracellular matrix molecules in the central nervous system (CNS), ensheathing neurons and regulating plasticity. The mechanism of interactions between PNNs and neurons remain uncharacterized. In this review, we pose the question: how do PNNs regulate communication to and from neurons? We provide an overview of the current knowledge on PNNs with a focus on the cellular interactions. PNNs ensheath a subset of the neuronal population with distinct molecular aspects in different areas of the CNS. PNNs control neuronal communication through molecular interactions involving specific components of the PNNs. This review proposes that the PNNs are an integral part of neurons, crucial for the regulation of plasticity in the CNS
The identification of proteoglycans and glycosaminoglycans in archaeological human bones and teeth
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeleto ns. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology
Metal Ion-dependent Heavy Chain Transfer Activity of TSG-6 Mediates Assembly of the Cumulus-Oocyte Matrix
The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix
- …
