2,878 research outputs found
Quantum anti-Zeno effect without wave function reduction
We study the measurement-induced enhancement of the spontaneous decay (called
quantum anti-Zeno effect) for a two-level subsystem, where measurements are
treated as couplings between the excited state and an auxiliary state rather
than the von Neumann's wave function reduction. The photon radiated in a fast
decay of the atom, from the auxiliary state to the excited state, triggers a
quasi-measurement, as opposed to a projection measurement. Our use of the term
"quasi-measurement" refers to a "coupling-based measurement". Such frequent
quasi-measurements result in an exponential decay of the survival probability
of atomic initial state with a photon emission following each
quasi-measurement. Our calculations show that the effective decay rate is of
the same form as the one based on projection measurements. What is more
important, the survival probability of the atomic initial state which is
obtained by tracing over all the photon states is equivalent to the survival
probability of the atomic initial state with a photon emission following each
quasi-measurement to the order under consideration. That is because the
contributions from those states with photon number less than the number of
quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure
Color & Weak triplet scalars, the dimuon asymmetry in decay, the top forward-backward asymmetry, and the CDF dijet excess
The new physics required to explain the anomalies recently reported by the D0
and CDF collaborations, namely the top forward-backward asymmetry (FBA), the
like-sign dimuon charge asymmetry in semileptonic b decay, and the CDF dijet
excess, has to feature an amount of flavor symmetry in order to satisfy the
severe constrains arising from flavor violation. In this paper we show that,
once baryon number conservation is imposed, color & weak triplet scalars with
hypercharge can feature the required flavor structure as a consequence
of standard model gauge invariance. The color & weak triplet model can
simultaneously explain the top FBA and the dimuon charge asymmetry or the
dimuon charge asymmetry and the CDF dijet excess. However, the CDF dijet excess
appears to be incompatible with the top FBA in the minimal framework. Our model
for the dimuon asymmetry predicts the observed pattern in the
region of parameter space required to explain the top FBA, whereas our model
for the CDF dijet anomaly is characterized by the absence of beyond the SM
b-quark jets in the excess region. Compatibility of the color & weak triplet
with the electroweak constraints is also discussed. We show that a Higgs boson
mass exceeding the LEP bound is typically favored in this scenario, and that
both Higgs production and decay can be significantly altered by the triplet.
The most promising collider signature is found if the splitting among the
components of the triplet is of weak scale magnitude.Comment: references added, published versio
Comparison of contact patterns relevant for transmission of respiratory pathogens in Thailand and the Netherlands using respondent-driven sampling
Understanding infection dynamics of respiratory diseases requires the identification and quantification of behavioural, social and environmental factors that permit the transmission of these infections between humans. Little empirical information is available about contact patterns within real-world social networks, let alone on differences in these contact networks between populations that differ considerably on a socio-cultural level. Here we compared contact network data that were collected in the Netherlands and Thailand using a similar online respondent-driven method. By asking participants to recruit contact persons we studied network links relevant for the transmission of respiratory infections. We studied correlations between recruiter and recruited contacts to investigate mixing patterns in the observed social network components. In both countries, mixing patterns were assortative by demographic variables and random by total numbers of contacts. However, in Thailand participants reported overall more contacts which resulted in higher effective contact rates. Our findings provide new insights on numbers of contacts and mixing patterns in two different populations. These data could be used to improve parameterisation of mathematical models used to design control strategies. Although the spread of infections through populations depends on more factors, found similarities suggest that spread may be similar in the Netherlands and Thailand
Hidden conformal symmetry of extreme and non-extreme Einstein-Maxwell-Dilaton-Axion black holes
The hidden conformal symmetry of extreme and non-extreme
Einstein-Maxwell-Dilaton-Axion (EMDA) black holes is addressed in this paper.
For the non-extreme one, employing the wave equation of massless scalars, the
conformal symmetry with left temperature and right
temperature in the near region is
found. The conformal symmetry is spontaneously broken due to the periodicity of
the azimuthal angle. The microscopic entropy is derived by the Cardy formula
and is fully in consistence with the Bekenstein-Hawking area-entropy law. The
absorption cross section in the near region is calculated and exactly equals
that in a 2D CFT. For the extreme case, by redefining the conformal
coordinates, the duality between the solution space and CFT is studied. The
microscopic entropy is found to exactly agree with the area-entropy law.Comment: V3, typos corrected, version to appear in JHE
General Analysis of Antideuteron Searches for Dark Matter
Low energy cosmic ray antideuterons provide a unique low background channel
for indirect detection of dark matter. We compute the cosmic ray flux of
antideuterons from hadronic annihilations of dark matter for various Standard
Model final states and determine the mass reach of two future experiments
(AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron
detection over current bounds. We consider generic models of scalar, fermion,
and massive vector bosons as thermal dark matter, describe their basic features
relevant to direct and indirect detection, and discuss the implications of
direct detection bounds on models of dark matter as a thermal relic. We also
consider specific dark matter candidates and assess their potential for
detection via antideuterons from their hadronic annihilation channels. Since
the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we
find that antideuterons can be a good indirect detection channel for a variety
of thermal relic electroweak scale dark matter candidates, even when the rate
for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
A novel class of microRNA-recognition elements that function only within open reading frames.
MicroRNAs (miRNAs) are well known to target 3' untranslated regions (3' UTRs) in mRNAs, thereby silencing gene expression at the post-transcriptional level. Multiple reports have also indicated the ability of miRNAs to target protein-coding sequences (CDS); however, miRNAs have been generally believed to function through similar mechanisms regardless of the locations of their sites of action. Here, we report a class of miRNA-recognition elements (MREs) that function exclusively in CDS regions. Through functional and mechanistic characterization of these 'unusual' MREs, we demonstrate that CDS-targeted miRNAs require extensive base-pairing at the 3' side rather than the 5' seed; cause gene silencing in an Argonaute-dependent but GW182-independent manner; and repress translation by inducing transient ribosome stalling instead of mRNA destabilization. These findings reveal distinct mechanisms and functional consequences of miRNAs that target CDS versus the 3' UTR and suggest that CDS-targeted miRNAs may use a translational quality-control-related mechanism to regulate translation in mammalian cells
Guillain-Barré syndrome: a century of progress
In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS
Long-lived charged Higgs at LHC as a probe of scalar Dark Matter
We study inert charged Higgs boson production and decays at LHC
experiments in the context of constrained scalar dark matter model (CSDMM). In
the CSDMM the inert doublet and singlet scalar's mass spectrum is predicted
from the GUT scale initial conditions via RGE evolution. We compute the cross
sections of processes at the LHC and show that
for light the first one is dominated by top quark mediated 1-loop
diagram with Higgs boson in s-channel. In a significant fraction of the
parameter space are long-lived because their decays to predominantly
singlet scalar dark matter (DM) and next-to-lightest (NL) scalar, are suppressed by the small singlet-doublet mixing
angle and by the moderate mass difference
The experimentally measurable displaced vertex in decays to leptons
and/or jets and missing energy allows one to discover the signal over
the huge background. We propose benchmark points for studies of this
scenario at the LHC. If, however, are short-lived, the subsequent
decays necessarily produce additional
displaced vertices that allow to reconstruct the full decay chain.Comment: 15 pages, 5 figure
Clinical Implication of Targeting of Cancer Stem Cells
The existence of cancer stem cells (CSCs) is receiving increasing interest particularly due to its potential ability to enter clinical routine. Rapid advances in the CSC field have provided evidence for the development of more reliable anticancer therapies in the future. CSCs typically only constitute a small fraction of the total tumor burden; however, they harbor self-renewal capacity and appear to be relatively resistant to conventional therapies. Recent therapeutic approaches aim to eliminate or differentiate CSCs or to disrupt the niches in which they reside. Better understanding of the biological characteristics of CSCs as well as improved preclinical and clinical trials targeting CSCs may revolutionize the treatment of many cancers. Copyright (c) 2012 S. Karger AG, Base
- …
