684 research outputs found
Modeling Molecular-Line Emission from Circumstellar Disks
Molecular lines hold valuable information on the physical and chemical
composition of disks around young stars, the likely progenitors of planetary
systems. This invited contribution discusses techniques to calculate the
molecular emission (and absorption) line spectrum based on models for the
physical and chemical structure of protoplanetary disks. Four examples of
recent research illutrate these techniques in practice: matching resolved
molecular-line emission from the disk around LkCa15 with theoertical models for
the chemistry; evaluating the two-dimensional transfer of ultraviolet radiation
into the disk, and the effect on the HCN/CN ratio; far-infrared CO line
emission from a superheated disk surface layer; and inward motions in the disk
around L1489 IRS.Comment: 6 pages, no figures. To appear in "The Dense Interstellar Medium in
Galaxies", Procs. Fourth Cologne-Bonn-Zermatt-Symposiu
Thermal Mitigation in Mobile Devices
In order to prevent damage and component failure from excess heat in a portable electronic device, thermal mitigation measures often are implemented by a thermal control module of the device. Temperature sensors, such as thermistors, provided with individual components of the device provide temperature information to a processor, which also receives information about the use of the device and its environment. Based on the temperature, usage, and environmental information, the processor determines whether thermal mitigation measures should be implemented to lower the temperature of one or more components to below a threshold and, if so, which mitigation measures to implement in order to do so with minimal impact on the experience of the user of the device
Probing the close environment of young stellar objects with interferometry
The study of Young Stellar Objects (YSOs) is one of the most exciting topics
that can be undertaken by long baseline optical interferometry. The magnitudes
of these objects are at the edge of capabilities of current optical
interferometers, limiting the studies to a few dozen, but are well within the
capability of coming large aperture interferometers like the VLT
Interferometer, the Keck Interferometer, the Large Binocular Telescope or
'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes
the very close environment of young stars, down to a tenth of an astronomical
unit. In this paper, I review the different aspects of star formation that can
be tackled by interferometry: circumstellar disks, multiplicity, jets. I
present recent observations performed with operational infrared
interferometers, IOTA, PTI and ISI, and I show why in the next future one will
extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large
Telescope Interferometer Challenges for the future
Integrating transposable elements in the 3D genome
Chromosome organisation is increasingly recognised as an essential component of genome regulation, cell fate and cell health. Within the realm of transposable elements (TEs) however, the spatial information of how genomes are folded is still only rarely integrated in experimental studies or accounted for in modelling. Whilst polymer physics is recognised as an important tool to understand the mechanisms of genome folding, in this commentary we discuss its potential applicability to aspects of TE biology. Based on recent works on the relationship between genome organisation and TE integration, we argue that existing polymer models may be extended to create a predictive framework for the study of TE integration patterns. We suggest that these models may offer orthogonal and generic insights into the integration profiles (or "topography") of TEs across organisms. In addition, we provide simple polymer physics arguments and preliminary molecular dynamics simulations of TEs inserting into heterogeneously flexible polymers. By considering this simple model, we show how polymer folding and local flexibility may generically affect TE integration patterns. The preliminary discussion reported in this commentary is aimed to lay the foundations for a large-scale analysis of TE integration dynamics and topography as a function of the three-dimensional host genome
Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors
Delta-9-tetrahydrocannabinol (THC), the main psychoactive compound of marijuana, induces numerous undesirable effects, including memory impairments, anxiety, and dependence. Conversely, THC also has potentially therapeutic effects, including analgesia, muscle relaxation, and neuroprotection. However, the mechanisms that dissociate these responses are still not known. Using mice lacking the serotonin receptor 5-HT2A, we revealed that the analgesic and amnesic effects of THC are independent of each other: while amnesia induced by THC disappears in the mutant mice, THC can still promote analgesia in these animals. In subsequent molecular studies, we showed that in specific brain regions involved in memory formation, the receptors for THC and the 5-HT2A receptors work together by physically interacting with each other. Experimentally interfering with this interaction prevented the memory deficits induced by THC, but not its analgesic properties. Our results highlight a novel mechanism by which the beneficial analgesic properties of THC can be dissociated from its cognitive side effects
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature
Background:
Scedosporium apiospermum
is an emerging opportunistic filamentous fungus, which is notorious for its
high levels of antifungal
‑resistance. It is able to cause localized cutaneous or subcutaneous infections in both immu‑
nocompromised and immunocompetent persons, pulmonary infections in patients with predisposing pulmonary
diseases and invasive mycoses in immunocompromised patients. Subcutaneous infections caused by this fungus
frequently show chronic mycetomatous manifestation.
Case report:
We report the case of a 70
‑year
‑old immunocompromised man, who developed a fungal mycetoma‑
tous infection on his right leg. There was no history of trauma; the aetiological agent was identified by microscopic
examination and ITS sequencing. This is the second reported case of
S. apiospermum
subcutaneous infections in
Hungary, which was successfully treated by surgical excision and terbinafine treatment. After 7
months, the patient
remained asymptomatic. Considering the antifungal susceptibility and increasing incidence of the fungus,
Sce
-
dosporium
related subcutaneous infections reported in the past quarter of century in European countries were also
reviewed.
Conclusions:
Corticosteroid treatment represents a serious risk factor of
S. apiospermum
infections, especially if the
patient get in touch with manure
‑enriched or polluted soil or water. Such infections have emerged several times in
European countries in the past decades. The presented data suggest that besides the commonly applied voricona‑
zole, terbinafine may be an alternative for the therapy of mycetomatous
Scedosporium
infections
Biology of human hair: Know your hair to control it
Hair can be engineered at different levels—its structure and surface—through modification of its constituent molecules, in particular proteins, but also the hair follicle (HF) can be genetically altered, in particular with the advent of siRNA-based applications. General aspects of hair biology are reviewed, as well as the most recent contributions to understanding hair pigmentation and the regulation of hair development. Focus will also be placed on the techniques developed specifically for delivering compounds of varying chemical nature to the HF, indicating methods for genetic/biochemical modulation of HF components for the treatment of hair diseases. Finally, hair fiber structure and chemical characteristics will be discussed as targets for keratin surface functionalization
Regulation of microRNA biogenesis and turnover by animals and their viruses
Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
- …
