709 research outputs found
Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers
We present a review of the interplay between the evolution of circumstellar
disks and the formation of planets, both from the perspective of theoretical
models and dedicated observations. Based on this, we identify and discuss
fundamental questions concerning the formation and evolution of circumstellar
disks and planets which can be addressed in the near future with optical and
infrared long-baseline interferometers. Furthermore, the importance of
complementary observations with long-baseline (sub)millimeter interferometers
and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics
Review"; The final publication is available at http://www.springerlink.co
Neutrino emission from dense matter, and neutron star thermal evolution
A brief review is given of neutrino emission processes in dense matter, with particular emphasis on recent developments. These include direct Urca processes for nucleons and hyperons, which can give rise to rapid energy loss from the stellar core without exotic matter, and the effect of band structure on neutrino bremsstrahlung from electrons in the crust, which results in much lower energy losses by this process than had previously been estimated
Stringy Stability of Charged Dilaton Black Holes with Flat Event Horizon
Electrically charged black holes with flat event horizon in anti-de Sitter
space have received much attention due to various applications in Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence, from modeling the
behavior of quark-gluon plasma to superconductor. Crucial to the physics on the
dual field theory is the fact that when embedded in string theory, black holes
in the bulk may become vulnerable to instability caused by brane
pair-production. Since dilaton arises naturally in the context of string
theory, we study the effect of coupling dilaton to Maxwell field on the
stability of flat charged AdS black holes. In particular, we study the
stability of Gao-Zhang black holes, which are locally asymptotically anti-de
Sitter. We find that for dilaton coupling parameter > 1, flat black
holes are stable against brane pair production, however for 0 < < 1,
the black holes eventually become unstable as the amount of electrical charges
is increased. Such instability however, behaves somewhat differently from that
of flat Reissner-Nordstr\"om black holes. In addition, we prove that the
Seiberg-Witten action of charged dilaton AdS black hole of Gao-Zhang type with
flat event horizon (at least in 5-dimension) is always logarithmically
divergent at infinity for finite values of , and is finite and positive
in the case tends to infinity . We also comment on the robustness of
our result for other charged dilaton black holes that are not of Gao-Zhang
type.Comment: Fixed some confusions regarding whether part of the discussions
concern electrically charged hole or magnetically charged one. No changes to
the result
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells
February 17, 2011The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome[superscript 1, 2, 3, 4, 5], resulting in altered patterns of gene expression[superscript 2, 6, 7, 8, 9]. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs)[superscript 10, 11] that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these, we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells, suggesting that their activation may promote the emergence of iPSCs. Supporting this, our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches, we found that one such lincRNA (lincRNA-RoR) modulates reprogramming, thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells
Glucuronidation by UGT1A1 Is the Dominant Pathway of the Metabolic Disposition of Belinostat in Liver Cancer Patients
10.1371/journal.pone.0054522PLoS ONE81
Epigenetic memory in induced pluripotent stem cells
Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an ‘epigenetic memory’ of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.National Institutes of Health (U.S.) (NIH grant RO1-DK70055)National Institutes of Health (U.S.) (NIH Grant RO1-DK59279)National Institutes of Health (U.S.) (American Recovery and Reinvestment Act (RC2-HL102815))National Institutes of Health (U.S.) (NIH (K99HL093212-01))Cooley’s Anemia FoundationNational Institutes of Health (U.S.) (NIH LLS (3567-07))National Institutes of Health (U.S.) (NIH grant R37CA054358)National Institutes of Health (U.S.) (NIH grant P50HG003233)National Institutes of Health (U.S.) (NIH grant R01AI047457)National Institutes of Health (U.S.) (NIH Grant R01AI047458)National Institutes of Health (U.S.) (CA86065)National Institutes of Health (U.S.) (HL099999)Thomas and Stacey Siebel FoundationCalifornia Institute for Regenerative Medicine (Fellowship T1-00001
Diagnoses, problems and healthcare interventions amongst older people with an unscheduled hospital admission who have concurrent mental health problems: a prevalence study
Background
Frail older people with mental health problems including delirium, dementia and depression are often admitted to general hospitals. However, hospital admission may cause distress, and can be associated with complications. Some commentators suggest that their healthcare needs could be better met elsewhere.
Methods
We studied consecutive patients aged 70 or older admitted for emergency medical or trauma care to an 1800 bed general hospital which provided sole emergency medical and trauma services for its local population. Patients were screened for mental health problems, and those screening positive were invited to take part. 250 participants were recruited and a sub-sample of 53 patients was assessed by a geriatrician for diagnoses, impairments and disabilities, healthcare interventions and outstanding needs.
Results
Median age was 86 years, median Mini-Mental State Examination score at admission was 16/30, and 45% had delirium. 19% lived in a care home prior to admission. All the patients were complex. A wide range of main admission diagnoses was recorded, and these were usually complicated by falls, immobility, pain, delirium, dehydration or incontinence. There was a median of six active diagnoses, and eight active problems. One quarter of problems was unexplained. A median of 13 interventions was recorded, and a median of a further four interventions suggested by the geriatrician. Those with more severe cognitive impairment had no less medical need.
Conclusions
This patient group, admitted to hospital in the United Kingdom, had numerous healthcare problems, and by implication, extensive healthcare needs. Patients with simpler conditions were not identified, but may have already been rapidly discharged or redirected to non-hospital services by the time assessments were made. To meet the needs of this group outside the hospital would need considerable investment in medical, nursing, therapy and diagnostic facilities. In the meantime, acute hospitals should adapt to deliver comprehensive geriatric assessment, and provide for their mental health needs
Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas
Summary
Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types
In-vivo optical detection of cancer using chlorin e6 – polyvinylpyrrolidone induced fluorescence imaging and spectroscopy
<p>Abstract</p> <p>Background</p> <p>Photosensitizer based fluorescence imaging and spectroscopy is fast becoming a promising approach for cancer detection. The purpose of this study was to examine the use of the photosensitizer chlorin e6 (Ce6) formulated in polyvinylpyrrolidone (PVP) as a potential exogenous fluorophore for fluorescence imaging and spectroscopic detection of human cancer tissue xenografted in preclinical models as well as in a patient.</p> <p>Methods</p> <p>Fluorescence imaging was performed on MGH human bladder tumor xenografted on both the chick chorioallantoic membrane (CAM) and the murine model using a fluorescence endoscopy imaging system. In addition, fiber optic based fluorescence spectroscopy was performed on tumors and various normal organs in the same mice to validate the macroscopic images. In one patient, fluorescence imaging was performed on angiosarcoma lesions and normal skin in conjunction with fluorescence spectroscopy to validate Ce6-PVP induced fluorescence visual assessment of the lesions.</p> <p>Results</p> <p>Margins of tumor xenografts in the CAM model were clearly outlined under fluorescence imaging. Ce6-PVP-induced fluorescence imaging yielded a specificity of 83% on the CAM model. In mice, fluorescence intensity of Ce6-PVP was higher in bladder tumor compared to adjacent muscle and normal bladder. Clinical results confirmed that fluorescence imaging clearly captured the fluorescence of Ce6-PVP in angiosarcoma lesions and good correlation was found between fluorescence imaging and spectral measurement in the patient.</p> <p>Conclusion</p> <p>Combination of Ce6-PVP induced fluorescence imaging and spectroscopy could allow for optical detection and discrimination between cancer and the surrounding normal tissues. Ce6-PVP seems to be a promising fluorophore for fluorescence diagnosis of cancer.</p
- …
