1,661 research outputs found

    Matrix Models for Supersymmetric Chern-Simons Theories with an ADE Classification

    Full text link
    We consider N=3 supersymmetric Chern-Simons (CS) theories that contain product U(N) gauge groups and bifundamental matter fields. Using the matrix model of Kapustin, Willett and Yaakov, we examine the Euclidean partition function of these theories on an S^3 in the large N limit. We show that the only such CS theories for which the long range forces between the eigenvalues cancel have quivers which are in one-to-one correspondence with the simply laced affine Dynkin diagrams. As the A_n series was studied in detail before, in this paper we compute the partition function for the D_4 quiver. The D_4 example gives further evidence for a conjecture that the saddle point eigenvalue distribution is determined by the distribution of gauge invariant chiral operators. We also see that the partition function is invariant under a generalized Seiberg duality for CS theories.Comment: 20 pages, 3 figures; v2 refs added; v3 conventions in figure 3 altered, version to appear in JHE

    The Many Phases of Holographic Superfluids

    Full text link
    We investigate holographic superfluids in AdS_{d+1} with d=3,4 in the non-backreacted approximation for various masses of the scalar field. In d=3 the phase structure is universal for all the masses that we consider: the critical temperature decreases as the superfluid velocity increases, and as it is cranked high enough, the order of the phase transition changes from second to first. Surprisingly, in d=4 we find that the phase structure is more intricate. For sufficiently high mass, there is always a second order phase transition to the normal phase, no matter how high the superfluid velocity. For some parameters, as we lower the temperature, this transition happens before a first order transition to a new superconducting phase. Across this first order transition, the gap in the transverse conductivity jumps from almost zero to about half its maximum value. We also introduce a double scaling limit where we can study the phase transitions (semi-)analytically in the large velocity limit. The results corroborate and complement our numerical results. In d=4, this approach has the virtue of being fully analytically tractable.Comment: 31 pages, 19 figure

    (Anti-)Brane backreaction beyond perturbation theory

    Get PDF
    We improve on the understanding of the backreaction of anti-D6-branes in a flux background that is mutually BPS with D6-branes. This setup is analogous to the study of the backreaction of anti-D3-branes inserted in the KS throat, but does not require us to smear the anti-branes or do a perturbative analysis around the BPS background. We solve the full equations of motion near the anti-D6-branes and show that only two boundary conditions are consistent with the equations of motion. Upon invoking a topological argument we eliminate the boundary condition with regular H flux since it cannot lead to a solution that approaches the right kind of flux away from the anti-D6-brane. This leaves us with a boundary condition which has singular, but integrable, H flux energy density.Comment: 12 pages + appendices, 1 figure; v2: minor changes, version published in JHE

    The ABCDEF's of Matrix Models for Supersymmetric Chern-Simons Theories

    Full text link
    We consider N = 3 supersymmetric Chern-Simons gauge theories with product unitary and orthosymplectic groups and bifundamental and fundamental fields. We study the partition functions on an S^3 by using the Kapustin-Willett-Yaakov matrix model. The saddlepoint equations in a large N limit lead to a constraint that the long range forces between the eigenvalues must cancel; the resulting quiver theories are of affine Dynkin type. We introduce a folding/unfolding trick which lets us, at the level of the large N matrix model, (i) map quivers with orthosymplectic groups to those with unitary groups, and (ii) obtain non-simply laced quivers from the corresponding simply laced quivers using a Z_2 outer automorphism. The brane configurations of the quivers are described in string theory and the folding/unfolding is interpreted as the addition/subtraction of orientifold and orbifold planes. We also relate the U(N) quiver theories to the affine ADE quiver matrix models with a Stieltjes-Wigert type potential, and derive the generalized Seiberg duality in 2 + 1 dimensions from Seiberg duality in 3 + 1 dimensions.Comment: 30 pages, 5 figure

    Type IIB Holographic Superfluid Flows

    Get PDF
    We construct fully backreacted holographic superfluid flow solutions in a five-dimensional theory that arises as a consistent truncation of low energy type IIB string theory. We construct a black hole with scalar and vector hair in this theory, and study the phase diagram. As expected, the superfluid phase ceases to exist for high enough superfluid velocity, but we show that the phase transition between normal and superfluid phases is always second order. We also analyze the zero temperature limit of these solutions. Interestingly, we find evidence that the emergent IR conformal symmetry of the zero-temperature domain wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure

    The problematic backreaction of SUSY-breaking branes

    Get PDF
    In this paper we investigate the localisation of SUSY-breaking branes which, in the smeared approximation, support specific non-BPS vacua. We show, for a wide class of boundary conditions, that there is no flux vacuum when the branes are described by a genuine delta-function. Even more, we find that the smeared solution is the unique solution with a regular brane profile. Our setup consists of a non-BPS AdS_7 solution in massive IIA supergravity with smeared anti-D6-branes and fluxes T-dual to ISD fluxes in IIB supergravity.Comment: 27 pages, Latex2e, 5 figure

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Drag force in a strongly coupled anisotropic plasma

    Full text link
    We calculate the drag force experienced by an infinitely massive quark propagating at constant velocity through an anisotropic, strongly coupled N=4 plasma by means of its gravity dual. We find that the gluon cloud trailing behind the quark is generally misaligned with the quark velocity, and that the latter is also misaligned with the force. The drag coefficient μ\mu can be larger or smaller than the corresponding isotropic value depending on the velocity and the direction of motion. In the ultra-relativistic limit we find that generically μp\mu \propto p. We discuss the conditions under which this behaviour may extend to more general situations.Comment: 25 pages, 13 figures; v2: minor changes, added reference

    Bayesian Methods for Exoplanet Science

    Full text link
    Exoplanet research is carried out at the limits of the capabilities of current telescopes and instruments. The studied signals are weak, and often embedded in complex systematics from instrumental, telluric, and astrophysical sources. Combining repeated observations of periodic events, simultaneous observations with multiple telescopes, different observation techniques, and existing information from theory and prior research can help to disentangle the systematics from the planetary signals, and offers synergistic advantages over analysing observations separately. Bayesian inference provides a self-consistent statistical framework that addresses both the necessity for complex systematics models, and the need to combine prior information and heterogeneous observations. This chapter offers a brief introduction to Bayesian inference in the context of exoplanet research, with focus on time series analysis, and finishes with an overview of a set of freely available programming libraries.Comment: Invited revie

    The running coupling of 8 flavors and 3 colors

    Get PDF
    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 8 flavors of massless fundamental Dirac fermions. The recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings allowing for a controlled continuum extrapolation. The results for the discrete beta-function show that it is monotonic without any sign of a fixed point in the range of couplings we cover. As a cross check the continuum results are compared with the well-known perturbative continuum beta-function for small values of the renormalized coupling and perfect agreement is found.Comment: 15 pages, 17 figures, published versio
    corecore