144 research outputs found
How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?
This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe
Tools and techniques for solvent selection: green solvent selection guides
Driven by legislation and evolving attitudes towards environmental issues, establishing green solvents for extractions, separations, formulations and reaction chemistry has become an increasingly important area of research. Several general purpose solvent selection guides have now been published with the aim to reduce use of the most hazardous solvents. This review serves the purpose of explaining the role of these guides, highlighting their similarities and differences. How they can be used most effectively to enhance the greenness of chemical processes, particularly in laboratory organic synthesis and the pharmaceutical industry, is addressed in detail
Tissue and cell-specific transcriptomes in cotton reveal the subtleties of gene regulation underlying the diversity of plant secondary cell walls
© 2017 The Author(s). Background: Knowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a 'typical' lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre. Results: Transcriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue's lacking many of the gene transcripts normally associated with lignin biosynthesis. Conclusions: Our study in cotton confirmed some features of the currently accepted gene regulatory cascade for 'typical' plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a 'typical' primary or secondary cell wall might not be applicable to all cell types in all plant species
Disparities in Healthcare Utilisation Rates for Aboriginal and Non-Aboriginal Albertan Residents, 1997-2006: A Population Database Study
Background: It is widely recognised that significant discrepancies exist between the health of indigenous and nonindigenous
populations. Whilst the reasons are incompletely defined, one potential cause is that indigenous communities
do not access healthcare to the same extent. We investigated healthcare utilisation rates in the Canadian Aboriginal
population to elucidate the contribution of this fundamental social determinant for health to such disparities.
Methods: Healthcare utilisation data over a nine-year period were analysed for a cohort of nearly two million individuals to
determine the rates at which Aboriginal and non-Aboriginal populations utilised two specialties (Cardiology and
Ophthalmology) in Alberta, Canada. Unadjusted and adjusted healthcare utilisation rates obtained by mixed linear and
Poisson regressions, respectively, were compared amongst three population groups - federally registered Aboriginals,
individuals receiving welfare, and other Albertans.
Results: Healthcare utilisation rates for Aboriginals were substantially lower than those of non-Aboriginals and welfare
recipients at each time point and subspecialty studied [e.g. During 2005/06, unadjusted Cardiology utilisation rates were
0.28% (Aboriginal, n = 97,080), 0.93% (non-Aboriginal, n = 1,720,041) and 1.37% (Welfare, n = 52,514), p = ,0.001]. The age
distribution of the Aboriginal population was markedly different [2.7%$65 years of age, non-Aboriginal 10.7%], and
comparable utilisation rates were obtained after adjustment for fiscal year and estimated life expectancy [Cardiology:
Incidence Rate Ratio 0.66, Ophthalmology: IRR 0.85].
Discussion: The analysis revealed that Aboriginal people utilised subspecialty healthcare at a consistently lower rate than
either comparatively economically disadvantaged groups or the general population. Notably, the differences were relatively
invariant between the major provincial centres and over a nine year period. Addressing the causes of these discrepancies is
essential for reducing marked health disparities, and so improving the health of Aboriginal people
Lanthanide-based β-Tricalcium Phosphate Upconversion Nanoparticles as an Effective Theranostic Nonviral Vectors for Image-Guided Gene Therapy
Lanthanide-based beta-tricalcium phosphate (β-TCP) upconversion nanoparticles are exploited as a non-viral vector for imaging guided-gene therapy by virtue of their unique optical properties and multi-modality imaging ability, high transfection efficiency, high biocompatibility, dispersibility, simplicity of synthesis and surface modification. Ytterbium and thulium-doped β-TCP nanoparticles (βTCPYbTm) are synthesized via co-precipitation method, coated with polyethylenimine (PEI) and functionalized with a nuclear-targeting peptide (TAT). Further, in vitro studies revealed that the nanotheranostic carriers are able to transfect cells with the plasmid eGFP at a high efficiency, with approximately 60% of total cells producing the fluorescent green protein. The optimized protocol developed comprises the most efficient βTCPYbTm/PEI configuration, the amount and the order of assembly of βTCPYbTm:PEI, TAT, plasmid DNA and the culturing conditions. With having excellent dispersibility and high chemical affinity toward nucleic acid, calcium ions released from βTCPYbTm:PEI nanoparticles can participate in delivering nucleic acids and other therapeutic molecules, overcoming the nuclear barriers and improving the transfection efficacy. Equally important, the feasibility of the upconversion multifunctional nanovector to serve as an effective contrast agent for imaging modality, capable of converting low-energy light to higher-energy photons via a multi-photons mechanism, endowing greater unique luminescent properties, was successfully demonstrated
Validity of Thermal Ramping Assays Used to Assess Thermal Tolerance in Arthropods
Proper assessment of environmental resistance of animals is critical for the ability of researchers to understand how variation in environmental conditions influence population and species abundance. This is also the case for studies of upper thermal limits in insects, where researchers studying animals under laboratory conditions must select appropriate methodology on which conclusions can be drawn. Ideally these methods should precisely estimate the trait of interest and also be biological meaningful. In an attempt to develop such tests it has been proposed that thermal ramping assays are useful assays for small insects because they incorporate an ecologically relevant gradual temperature change. However, recent model-based papers have suggested that estimates of thermal resistance may be strongly confounded by simultaneous starvation and dehydration stress. In the present study we empirically test these model predictions using two sets of independent experiments. We clearly demonstrate that results from ramping assays of small insects (Drosophila melanogaster) are not compromised by starvation- or dehydration-stress. Firstly we show that the mild disturbance of water and energy balance of D. melanogaster experienced during the ramping tests does not confound heat tolerance estimates. Secondly we show that flies pre-exposed to starvation and dehydration have “normal” heat tolerance and that resistance to heat stress is independent of the energetic and water status of the flies. On the basis of our results we discuss the assumptions used in recent model papers and present arguments as to why the ramping assay is both a valid and ecologically relevant way to measure thermal resistance in insects
Association analysis of a highly polymorphic CAG Repeat in the human potassium channel gene KCNN3 and migraine susceptibility
BACKGROUND: Migraine is a polygenic multifactorial disease, possessing environmental and genetic causative factors with multiple involved genes. Mutations in various ion channel genes are responsible for a number of neurological disorders. KCNN3 is a neuronal small conductance calcium-activated potassium channel gene that contains two polyglutamine tracts, encoded by polymorphic CAG repeats in the gene. This gene plays a critical role in determining the firing pattern of neurons and acts to regulate intracellular calcium channels. METHODS: The present association study tested whether length variations in the second (more 3') polymorphic CAG repeat in exon 1 of the KCNN3 gene, are involved in susceptibility to migraine with and without aura (MA and MO). In total 423 DNA samples from unrelated individuals, of which 202 consisted of migraine patients and 221 non-migraine controls, were genotyped and analysed using a fluorescence labelled primer set on an ABI310 Genetic Analyzer. Allele frequencies were calculated from observed genotype counts for the KCNN3 polymorphism. Analysis was performed using standard contingency table analysis, incorporating the chi-squared test of independence and CLUMP analysis. RESULTS: Overall, there was no convincing evidence that KCNN3 CAG lengths differ between Caucasian migraineurs and controls, with no significant difference in the allelic length distribution of CAG repeats between the population groups (P = 0.090). Also the MA and MO subtypes did not differ significantly between control allelic distributions (P > 0.05). The prevalence of the long CAG repeat (>19 repeats) did not reach statistical significance in migraineurs (P = 0.15), nor was there a significant difference between the MA and MO subgroups observed compared to controls (P = 0.46 and P = 0.09, respectively), or between MA vs MO (P = 0.40). CONCLUSION: This association study provides no evidence that length variations of the second polyglutamine array in the N-terminus of the KCNN3 channel exert an effect in the pathogenesis of migraine
Hospitalizations for acetaminophen overdose: a Canadian population-based study from 1995 to 2004
<p>Abstract</p> <p>Background</p> <p>Acetaminophen overdose (AO) is the most common cause of acute liver failure. We examined temporal trends and sociodemographic risk factors for AO in a large Canadian health region.</p> <p>Methods</p> <p>1,543 patients hospitalized for AO in the Calgary Health Region (population ~1.1 million) between 1995 and 2004 were identified using administrative data.</p> <p>Results</p> <p>The age/sex-adjusted hospitalization rate decreased by 41% from 19.6 per 100,000 population in 1995 to 12.1 per 100,000 in 2004 (<it>P </it>< 0.0005). This decline was greater in females than males (46% vs. 29%). Whereas rates fell 46% in individuals under 50 years, a 50% increase was seen in those ≥ 50 years. Hospitalization rates for intentional overdoses fell from 16.6 per 100,000 in 1995 to 8.6 per 100,000 in 2004 (2004 vs. 1995: rate ratio [RR] 0.49; <it>P </it>< 0.0005). Accidental overdoses decreased between 1995 and 2002, but increased to above baseline levels by 2004 (2004 vs. 1995: RR 1.24;<it>P </it>< 0.0005). Risk factors for AO included female sex (RR 2.19; <it>P </it>< 0.0005), Aboriginal status (RR 4.04; <it>P </it>< 0.0005), and receipt of social assistance (RR 5.15; <it>P </it>< 0.0005).</p> <p>Conclusion</p> <p>Hospitalization rates for AO, particularly intentional ingestions, have fallen in our Canadian health region between 1995 and 2004. Young patients, especially females, Aboriginals, and recipients of social assistance, are at highest risk.</p
Thymosin Beta 4 Prevents Oxidative Stress by Targeting Antioxidant and Anti-Apoptotic Genes in Cardiac Fibroblasts
Thymosin beta-4 (Tβ4) is a ubiquitous protein with diverse functions relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory responses. The effecter molecules targeted by Tβ4 for cardiac protection remains unknown. The purpose of this study is to determine the molecules targeted by Tβ4 that mediate cardio-protection under oxidative stress.Rat neonatal fibroblasts cells were exposed to hydrogen peroxide (H(2)O(2)) in presence and absence of Tβ4 and expression of antioxidant, apoptotic and pro-fibrotic genes was evaluated by quantitative real-time PCR and western blotting. Reactive oxygen species (ROS) levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant and antiapoptotic genes were silenced by siRNA transfections in cardiac fibroblasts and the effect of Tβ4 on H(2)O(2)-induced profibrotic events was evaluated.Pre-treatment with Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2)O(2) in the cardiac fibroblasts. This was associated with an increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase and reduction of Bax/Bcl(2) ratio. Tβ4 treatment reduced the expression of pro-fibrotic genes [connective tissue growth factor (CTGF), collagen type-1 (Col-I) and collagen type-3 (Col-III)] in the cardiac fibroblasts. Silencing of Cu/Zn-SOD and catalase gene triggered apoptotic cell death in the cardiac fibroblasts, which was prevented by treatment with Tβ4.This is the first report that exhibits the targeted molecules modulated by Tβ4 under oxidative stress utilizing the cardiac fibroblasts. Tβ4 treatment prevented the profibrotic gene expression in the in vitro settings. Our findings indicate that Tβ4 selectively targets and upregulates catalase, Cu/Zn-SOD and Bcl(2), thereby, preventing H(2)O(2)-induced profibrotic changes in the myocardium. Further studies are warranted to elucidate the signaling pathways involved in the cardio-protection afforded by Tβ4
Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain
Faces are processed by a neural system with distributed anatomical components, but the roles of these components remain unclear. A dominant theory of face perception postulates independent representations of invariant aspects of faces (e.g., identity) in ventral temporal cortex including the fusiform gyrus, and changeable aspects of faces (e.g., emotion) in lateral temporal cortex including the superior temporal sulcus. Here we recorded neuronal activity directly from the cortical surface in 9 neurosurgical subjects undergoing epilepsy monitoring while they viewed static and dynamic facial expressions. Applying novel decoding analyses to the power spectrogram of electrocorticograms (ECoG) from over 100 contacts in ventral and lateral temporal cortex, we found better representation of both invariant and changeable aspects of faces in ventral than lateral temporal cortex. Critical information for discriminating faces from geometric patterns was carried by power modulations between 50 to 150 Hz. For both static and dynamic face stimuli, we obtained a higher decoding performance in ventral than lateral temporal cortex. For discriminating fearful from happy expressions, critical information was carried by power modulation between 60–150 Hz and below 30 Hz, and again better decoded in ventral than lateral temporal cortex. Task-relevant attention improved decoding accuracy more than10% across a wide frequency range in ventral but not at all in lateral temporal cortex. Spatial searchlight decoding showed that decoding performance was highest around the middle fusiform gyrus. Finally, we found that the right hemisphere, in general, showed superior decoding to the left hemisphere. Taken together, our results challenge the dominant model for independent face representation of invariant and changeable aspects: information about both face attributes was better decoded from a single region in the middle fusiform gyrus
- …
