40 research outputs found

    Holography of Charged Dilaton Black Holes

    Get PDF
    We study charged dilaton black branes in AdS4AdS_4. Our system involves a dilaton ϕ\phi coupled to a Maxwell field FμνF_{\mu\nu} with dilaton-dependent gauge coupling, 1g2=f2(ϕ){1\over g^2} = f^2(\phi). First, we find the solutions for extremal and near extremal branes through a combination of analytical and numerical techniques. The near horizon geometries in the simplest cases, where f(ϕ)=eαϕf(\phi) = e^{\alpha\phi}, are Lifshitz-like, with a dynamical exponent zz determined by α\alpha. The black hole thermodynamics varies in an interesting way with α\alpha, but in all cases the entropy is vanishing and the specific heat is positive for the near extremal solutions. We then compute conductivity in these backgrounds. We find that somewhat surprisingly, the AC conductivity vanishes like ω2\omega^2 at T=0 independent of α\alpha. We also explore the charged black brane physics of several other classes of gauge-coupling functions f(ϕ)f(\phi). In addition to possible applications in AdS/CMT, the extremal black branes are of interest from the point of view of the attractor mechanism. The near horizon geometries for these branes are universal, independent of the asymptotic values of the moduli, and describe generic classes of endpoints for attractor flows which are different from AdS2×R2AdS_2\times R^2.Comment: 33 pages, 3 figures, LaTex; v2, references added; v3, more refs added; v4, refs added, minor correction

    Nonlinear Hydrodynamics from Flow of Retarded Green's Function

    Full text link
    We study the radial flow of retarded Green's function of energy-momentum tensor and RR-current of dual gauge theory in presence of generic higher derivative terms in bulk Lagrangian. These are first order non-linear Riccati equations. We solve these flow equations analytically and obtain second order transport coefficients of boundary plasma. This way of computing transport coefficients has an advantage over usual Kubo approach. The non-linear equation turns out to be a linear first order equation when we study the Green's function perturbatively in momentum. We consider several examples including Weyl4Weyl^4 term and generic four derivative terms in bulk. We also study the flow equations for RR-charged black holes and obtain exact expressions for second order transport coefficients for dual plasma in presence of arbitrary chemical potentials. Finally we obtain higher derivative corrections to second order transport coefficients of boundary theory dual to five dimensional gauge supergravity.Comment: Version 2, reference added, typos correcte

    Universality and exactness of Schrodinger geometries in string and M-theory

    Full text link
    We propose an organizing principle for classifying and constructing Schrodinger-invariant solutions within string theory and M-theory, based on the idea that such solutions represent nonlinear completions of linearized vector and graviton Kaluza-Klein excitations of AdS compactifications. A crucial simplification, derived from the symmetry of AdS, is that the nonlinearities appear only quadratically. Accordingly, every AdS vacuum admits infinite families of Schrodinger deformations parameterized by the dynamical exponent z. We exhibit the ease of finding these solutions by presenting three new constructions: two from M5 branes, both wrapped and extended, and one from the D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a CFT by a null vector operator can lead to nonzero beta-functions for spin-2 operators; however, symmetry restricts them to be at most quadratic in couplings. This point of view also allows us to easily prove nonrenormalization theorems: for any Sch(z) solution of two-derivative supergravity constructed in the above manner, z is uncorrected to all orders in higher derivative corrections if the deforming KK mode lies in a short multiplet of an AdS supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with 4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight change in interpretation in section 2.3, new Schrodinger and Lifshitz solutions included; v3, clarifications in sections 2 and 3 regarding existence of solutions and multi-trace operator

    Moduli and electromagnetic black brane holography

    Get PDF
    We investigate the thermodynamic and hydrodynamic properties of 4-dimensional gauge theories with finite electric charge density in the presence of a constant magnetic field. Their gravity duals are planar magnetically and electrically charged AdS black holes in theories that contain a gauge Chern-Simons term. We present a careful analysis of the near horizon geometry of these black branes at finite and zero temperature for the case of a scalar field non-minimally coupled to the electromagnetic field. With the knowledge of the near horizon data, we obtain analytic expressions for the shear viscosity coefficient and entropy density, and also study the effect of a generic set of four derivative interactions on their ratio. We also comment on the attractor flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed; v4: a proof for decoupling of the viscosity mode added in appendix, matches the published versio

    Wilsonian Approach to Fluid/Gravity Duality

    Get PDF
    The problem of gravitational fluctuations confined inside a finite cutoff at radius r=rcr=r_c outside the horizon in a general class of black hole geometries is considered. Consistent boundary conditions at both the cutoff surface and the horizon are found and the resulting modes analyzed. For general cutoff rcr_c the dispersion relation is shown at long wavelengths to be that of a linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent line-integral formula for the diffusion constant D(rc)D(r_c) is derived. The dependence on rcr_c is interpreted as renormalization group (RG) flow in the fluid. Taking the cutoff to infinity in an asymptotically AdS context, the formula for D()D(\infty) reproduces as a special case well-known results derived using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound goes to infinity, the fluid becomes incompressible and the Navier-Stokes dispersion relation becomes exact. The resulting universal formula for the diffusion constant D(horizon)D(horizon) reproduces old results from the membrane paradigm. Hence the old membrane paradigm results and new AdS/CFT results are related by RG flow. RG flow-invariance of the viscosity to entropy ratio η/s\eta /s is shown to follow from the first law of thermodynamics together with isentropy of radial evolution in classical gravity. The ratio is expected to run when quantum gravitational corrections are included.Comment: 34 pages, harvmac, clarified boundary conditio

    Generating Temperature Flow for eta/s with Higher Derivatives: From Lifshitz to AdS

    Full text link
    We consider charged dilatonic black branes in AdS_5 and examine the effects of perturbative higher derivative corrections on the ratio of shear viscosity to entropy density eta/s of the dual plasma. The structure of eta/s is controlled by the relative hierarchy between the two scales in the plasma, the temperature and the chemical potential. In this model the background near-horizon geometry interpolates between a Lifshitz-like brane at low temperature, and an AdS brane at high temperatures -- with AdS asymptotics in both cases. As a result, in this construction the viscosity to entropy ratio flows as a function of temperature, from a value in the IR which is sensitive to the dynamical exponent z, to the simple result expected for an AdS brane in the UV. Coupling the scalar directly to the higher derivative terms generates additional temperature dependence, and leads to a particularly interesting structure for eta/s in the IR.Comment: Plots and references added. Journal version of the pape

    Holographic current correlators at finite coupling and scattering off a supersymmetric plasma

    Full text link
    By studying the effect of the order(\alpha'^3) string theory corrections to type IIB supergravity, including those corrections involving the Ramond-Ramond five-form field strength, we obtain the corrected equations of motion of an Abelian perturbation of the AdS_5-Schwarzschild black hole. We then use the gauge theory/string theory duality to examine the coupling-constant dependence of vector current correlators associated to a gauged U(1) sub-group of the global R-symmetry group of strongly-coupled N=4 supersymmetric Yang-Mills theory at finite temperature. The corrections induce a set of higher-derivative operators for the U(1) gauge field, but their effect is highly suppressed. We thus find that the order(\alpha'^3) corrections affect the vector correlators only indirectly, through the corrected metric. We apply our results to investigate scattering off a supersymmetric Yang-Mills plasma at low and high energy. In the latter regime, where Deep Inelastic Scattering is expected to occur, we find an enhancement of the plasma structure functions in comparison with the infinite 't Hooft coupling result.Comment: 38 pages, 6 figures, minor clarifications added, typos corrected, references adde

    Semi-Holographic Fermi Liquids

    Full text link
    We show that the universal physics of recent holographic non-Fermi liquid models is captured by a semi-holographic description, in which a dynamical boundary field is coupled to a strongly coupled conformal sector having a gravity dual. This allows various generalizations, such as a dynamical exponent and lattice and impurity effects. We examine possible relevant deformations, including multi-trace terms and spin-orbit effects. We discuss the matching onto the UV theory of the earlier work, and an alternate description in which the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde

    A prototype telepresence robot for use in the investigation of ebola and lassa virus threatened villages in Nigeria

    Get PDF
    The article investigates the idea of low-cost, telepresence-based mobile robots for eventual use within villages and rural areas in Nigeria, where diseases such as the Ebola Virus Disease (EVD) and Lassa Haemorrhagic Fever (LHF) are common, yet human intervention is constrained due to the great risk of transmission through bodily fluids. To illustrate the concept and practical issues arising, a systems design approach is taken to identify some of the engineering requirements; and, in the focus of this article, a prototype has been developed at Lancaster University. The robotic device is semi-humanoid in that the upper half features two 7-DOF manipulators, designed in part to resemble human operation, while the lower half consists of a four-wheeled base, prioritising ease of operation and reliability over the flexibility offered by a leg-based system
    corecore