40 research outputs found
Holography of Charged Dilaton Black Holes
We study charged dilaton black branes in . Our system involves a
dilaton coupled to a Maxwell field with dilaton-dependent
gauge coupling, . First, we find the solutions for
extremal and near extremal branes through a combination of analytical and
numerical techniques. The near horizon geometries in the simplest cases, where
, are Lifshitz-like, with a dynamical exponent
determined by . The black hole thermodynamics varies in an interesting
way with , but in all cases the entropy is vanishing and the specific
heat is positive for the near extremal solutions. We then compute conductivity
in these backgrounds. We find that somewhat surprisingly, the AC conductivity
vanishes like at T=0 independent of . We also explore the
charged black brane physics of several other classes of gauge-coupling
functions . In addition to possible applications in AdS/CMT, the
extremal black branes are of interest from the point of view of the attractor
mechanism. The near horizon geometries for these branes are universal,
independent of the asymptotic values of the moduli, and describe generic
classes of endpoints for attractor flows which are different from .Comment: 33 pages, 3 figures, LaTex; v2, references added; v3, more refs
added; v4, refs added, minor correction
Nonlinear Hydrodynamics from Flow of Retarded Green's Function
We study the radial flow of retarded Green's function of energy-momentum
tensor and -current of dual gauge theory in presence of generic higher
derivative terms in bulk Lagrangian. These are first order non-linear Riccati
equations. We solve these flow equations analytically and obtain second order
transport coefficients of boundary plasma. This way of computing transport
coefficients has an advantage over usual Kubo approach. The non-linear equation
turns out to be a linear first order equation when we study the Green's
function perturbatively in momentum. We consider several examples including
term and generic four derivative terms in bulk. We also study the flow
equations for -charged black holes and obtain exact expressions for second
order transport coefficients for dual plasma in presence of arbitrary chemical
potentials. Finally we obtain higher derivative corrections to second order
transport coefficients of boundary theory dual to five dimensional gauge
supergravity.Comment: Version 2, reference added, typos correcte
Universality and exactness of Schrodinger geometries in string and M-theory
We propose an organizing principle for classifying and constructing
Schrodinger-invariant solutions within string theory and M-theory, based on the
idea that such solutions represent nonlinear completions of linearized vector
and graviton Kaluza-Klein excitations of AdS compactifications. A crucial
simplification, derived from the symmetry of AdS, is that the nonlinearities
appear only quadratically. Accordingly, every AdS vacuum admits infinite
families of Schrodinger deformations parameterized by the dynamical exponent z.
We exhibit the ease of finding these solutions by presenting three new
constructions: two from M5 branes, both wrapped and extended, and one from the
D1-D5 (and S-dual F1-NS5) system. From the boundary perspective, perturbing a
CFT by a null vector operator can lead to nonzero beta-functions for spin-2
operators; however, symmetry restricts them to be at most quadratic in
couplings. This point of view also allows us to easily prove nonrenormalization
theorems: for any Sch(z) solution of two-derivative supergravity constructed in
the above manner, z is uncorrected to all orders in higher derivative
corrections if the deforming KK mode lies in a short multiplet of an AdS
supergroup. Furthermore, we find infinite classes of 1/4 BPS solutions with
4-,5- and 7-dimensional Schrodinger symmetry that are exact.Comment: 31 pages, plus appendices; v2, minor corrections, added refs, slight
change in interpretation in section 2.3, new Schrodinger and Lifshitz
solutions included; v3, clarifications in sections 2 and 3 regarding
existence of solutions and multi-trace operator
Moduli and electromagnetic black brane holography
We investigate the thermodynamic and hydrodynamic properties of 4-dimensional
gauge theories with finite electric charge density in the presence of a
constant magnetic field. Their gravity duals are planar magnetically and
electrically charged AdS black holes in theories that contain a gauge
Chern-Simons term. We present a careful analysis of the near horizon geometry
of these black branes at finite and zero temperature for the case of a scalar
field non-minimally coupled to the electromagnetic field. With the knowledge of
the near horizon data, we obtain analytic expressions for the shear viscosity
coefficient and entropy density, and also study the effect of a generic set of
four derivative interactions on their ratio. We also comment on the attractor
flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed;
v4: a proof for decoupling of the viscosity mode added in appendix, matches
the published versio
Wilsonian Approach to Fluid/Gravity Duality
The problem of gravitational fluctuations confined inside a finite cutoff at
radius outside the horizon in a general class of black hole geometries
is considered. Consistent boundary conditions at both the cutoff surface and
the horizon are found and the resulting modes analyzed. For general cutoff
the dispersion relation is shown at long wavelengths to be that of a
linearized Navier-Stokes fluid living on the cutoff surface. A cutoff-dependent
line-integral formula for the diffusion constant is derived. The
dependence on is interpreted as renormalization group (RG) flow in the
fluid. Taking the cutoff to infinity in an asymptotically AdS context, the
formula for reproduces as a special case well-known results derived
using AdS/CFT. Taking the cutoff to the horizon, the effective speed of sound
goes to infinity, the fluid becomes incompressible and the Navier-Stokes
dispersion relation becomes exact. The resulting universal formula for the
diffusion constant reproduces old results from the membrane
paradigm. Hence the old membrane paradigm results and new AdS/CFT results are
related by RG flow. RG flow-invariance of the viscosity to entropy ratio is shown to follow from the first law of thermodynamics together with
isentropy of radial evolution in classical gravity. The ratio is expected to
run when quantum gravitational corrections are included.Comment: 34 pages, harvmac, clarified boundary conditio
Generating Temperature Flow for eta/s with Higher Derivatives: From Lifshitz to AdS
We consider charged dilatonic black branes in AdS_5 and examine the effects
of perturbative higher derivative corrections on the ratio of shear viscosity
to entropy density eta/s of the dual plasma. The structure of eta/s is
controlled by the relative hierarchy between the two scales in the plasma, the
temperature and the chemical potential. In this model the background
near-horizon geometry interpolates between a Lifshitz-like brane at low
temperature, and an AdS brane at high temperatures -- with AdS asymptotics in
both cases. As a result, in this construction the viscosity to entropy ratio
flows as a function of temperature, from a value in the IR which is sensitive
to the dynamical exponent z, to the simple result expected for an AdS brane in
the UV. Coupling the scalar directly to the higher derivative terms generates
additional temperature dependence, and leads to a particularly interesting
structure for eta/s in the IR.Comment: Plots and references added. Journal version of the pape
Holographic current correlators at finite coupling and scattering off a supersymmetric plasma
By studying the effect of the order(\alpha'^3) string theory corrections to
type IIB supergravity, including those corrections involving the Ramond-Ramond
five-form field strength, we obtain the corrected equations of motion of an
Abelian perturbation of the AdS_5-Schwarzschild black hole. We then use the
gauge theory/string theory duality to examine the coupling-constant dependence
of vector current correlators associated to a gauged U(1) sub-group of the
global R-symmetry group of strongly-coupled N=4 supersymmetric Yang-Mills
theory at finite temperature. The corrections induce a set of higher-derivative
operators for the U(1) gauge field, but their effect is highly suppressed. We
thus find that the order(\alpha'^3) corrections affect the vector correlators
only indirectly, through the corrected metric. We apply our results to
investigate scattering off a supersymmetric Yang-Mills plasma at low and high
energy. In the latter regime, where Deep Inelastic Scattering is expected to
occur, we find an enhancement of the plasma structure functions in comparison
with the infinite 't Hooft coupling result.Comment: 38 pages, 6 figures, minor clarifications added, typos corrected,
references adde
Semi-Holographic Fermi Liquids
We show that the universal physics of recent holographic non-Fermi liquid
models is captured by a semi-holographic description, in which a dynamical
boundary field is coupled to a strongly coupled conformal sector having a
gravity dual. This allows various generalizations, such as a dynamical exponent
and lattice and impurity effects. We examine possible relevant deformations,
including multi-trace terms and spin-orbit effects. We discuss the matching
onto the UV theory of the earlier work, and an alternate description in which
the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde
A prototype telepresence robot for use in the investigation of ebola and lassa virus threatened villages in Nigeria
The article investigates the idea of low-cost, telepresence-based mobile robots for eventual use within villages and rural areas in Nigeria, where diseases such as the Ebola Virus Disease (EVD) and Lassa Haemorrhagic Fever (LHF) are common, yet human intervention is constrained due to the great risk of transmission through bodily fluids. To illustrate the concept and practical issues arising, a systems design approach is taken to identify some of the engineering requirements; and, in the focus of this article, a prototype has been developed at Lancaster University. The robotic device is semi-humanoid in that the upper half features two 7-DOF manipulators, designed in part to resemble human operation, while the lower half consists of a four-wheeled base, prioritising ease of operation and reliability over the flexibility offered by a leg-based system
