786 research outputs found
Designing Optimal Perovskite Structure for High Ionic Conduction.
Solid-oxide fuel/electrolyzer cells are limited by a dearth of electrolyte materials with low ohmic loss and an incomplete understanding of the structure-property relationships that would enable the rational design of better materials. Here, using epitaxial thin-film growth, synchrotron radiation, impedance spectroscopy, and density-functional theory, the impact of structural parameters (i.e., unit-cell volume and octahedral rotations) on ionic conductivity is delineated in La0.9 Sr0.1 Ga0.95 Mg0.05 O3- δ . As compared to the zero-strain state, compressive strain reduces the unit-cell volume while maintaining large octahedral rotations, resulting in a strong reduction of ionic conductivity, while tensile strain increases the unit-cell volume while quenching octahedral rotations, resulting in a negligible effect on the ionic conductivity. Calculations reveal that larger unit-cell volumes and octahedral rotations decrease migration barriers and create low-energy migration pathways, respectively. The desired combination of large unit-cell volume and octahedral rotations is normally contraindicated, but through the creation of superlattice structures both expanded unit-cell volume and large octahedral rotations are experimentally realized, which result in an enhancement of the ionic conductivity. All told, the potential to tune ionic conductivity with structure alone by a factor of ≈2.5 at around 600 °C is observed, which sheds new light on the rational design of ion-conducting perovskite electrolytes
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Effect of anthropogenic sulphate aerosol in China on the drought in the western-to-central US
In recent decades, droughts have occurred in the western-to-central United States (US), significantly affecting food production, water supplies, ecosystem health, and the propagation of vector-borne diseases. Previous studies have suggested natural sea surface temperature (SST) forcing in the Pacific as the main driver of precipitation deficits in the US. Here, we show that the aerosol forcing in China, which has been known to alter the regional hydrological cycle in East Asia, may also contribute to reducing the precipitation in the western-to-central US through atmospheric teleconnections across the Pacific. Our model experiments show some indications that both the SST forcing and the increase in regional sulphate forcing in China play a similar role in modulating the western-to-central US precipitation, especially its long-term variation. This result indicates that regional air quality regulations in China have important implications for hydrological cycles in East Asia, as well as in the USopen1
Is Malaysia’s banded langur, Presbytis femoralis femoralis, actually Presbytis neglectus neglectus? Taxonomic revision with new insights on the radiation history of the Presbytis species group in Southeast Asia
The disjunct distribution of Presbytis femoralis subspecies across Sumatra (P. f. percura), southern (P. f. femoralis) and northern (P. f. robinsoni) Peninsular Malaysia marks the unique vicariance events in the Sunda Shelf. However, the taxonomic positions and evolutionary history of P. f. femoralis are unresolved after decades of research. To elucidate this evolutionary history, we analyzed 501 base pairs of the mitochondrial HVSI gene from 25 individuals representing Malaysia’s banded langur, with the addition of 29 sequences of Asian Presbytis from Genbank. Our results revealed closer affinity of P. f. femoralis to P. m. mitrata and P. m. sumatrana while maintaining the monophyletic state of P. f. femoralis as compared to P. f. robinsoni. Two central theses were inferred from the results; (1) P. f. femoralis does not belong in the same species classification as P. f. robinsoni, and (2) P. f. femoralis is the basal lineage of the Presbytis in Peninsular Malaysia. Proving the first hypothesis through genetic analysis, we reassigned P. f. femoralis of Malaysia to Presbytis neglectus (Schlegel’s banded langur) (Schlegel in Revue Methodique, Museum d’Histoire Naturelle des Pays-Bas 7:1, 1876) following the International Code of Zoological Nomenclature (article 23.3). The ancestors of P. neglectus are hypothesized to have reached southern Peninsular Malaysia during the Pleistocene and survived in refugium along the western coast. Consequently, they radiated upward, forming P. f. robinsoni and P. siamensis resulting in the highly allopatric distribution in Peninsular Malaysia. This study has successfully resolved the taxonomic position of P. neglectus in Peninsular Malaysia while providing an alternative biogeographic theory for the Asian Presbytis
Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection
Phylogenetic Relationships among the Colobine Monkeys Revisited: New Insights from Analyses of Complete mt Genomes and 44 Nuclear Non-Coding Markers
Background: Phylogenetic relationships among Asian and African colobine genera have been disputed and are not yet well established. In the present study, we revisit the contentious relationships within the Asian and African Colobinae by analyzing 44 nuclear non-coding genes (.23 kb) and mitochondrial (mt) genome sequences from 14 colobine and 4 noncolobine primates. Principal Findings: The combined nuclear gene and the mt genome as well as the combined nuclear and mt gene analyses yielded different phylogenetic relationships among colobine genera with the exception of a monophyletic ‘odd-nosed’ group consisting of Rhinopithecus, Pygathrix and Nasalis, and a monophyletic African group consisting of Colobus and Piliocolobus. The combined nuclear data analyses supported a sister-grouping between Semnopithecus and Trachypithecus, and between Presbytis and the odd-nosed monkey group, as well as a sister-taxon association of Pygathrix and Rhinopithecus within the odd-nosed monkey group. In contrast, mt genome data analyses revealed that Semnopithecus diverged earliest among the Asian colobines and that the odd-nosed monkey group is sister to a Presbytis and Trachypithecus clade, as well as a close association of Pygathrix with Nasalis. The relationships among these genera inferred from the analyses of combined nuclear and mt genes, however, varied with the tree-building methods used. Another remarkable finding of the present study is that all of our analyses rejected the recently proposed African colobine paraphyl
Nationwide Surveillance of Influenza during the Pandemic (2009–10) and Post-Pandemic (2010–11) Periods in Taiwan
INTRODUCTION: Although WHO declared the world moving into the post-pandemic period on August 10, 2010, influenza A(H1N1) 2009 virus continued to circulate globally. Its impact was expected to continue during the 2010-11 influenza season. This study describes the nationwide surveillance findings of the pandemic and post-pandemic influenza periods in Taiwan and assesses the impact of influenza A(H1N1) 2009 during the post-pandemic period. METHODS: The Influenza Laboratory Surveillance Network consisted of 12 contract laboratories for collecting and testing samples with acute respiratory tract infections. Surveillance of emergency room visits and outpatient department visits for influenza-like illness (ILI) were conducted using the Real-Time Outbreak and Disease Surveillance system and the National Health Insurance program data, respectively. Hospitalized cases with severe complications and deaths were reported to the National Notifiable Disease Surveillance System. RESULTS: During the 2009-10 influenza season, pandemic A(H1N1) 2009 was the predominant circulating strain and caused 44 deaths. However, the 2010-11 influenza season began with A(H3N2) being the predominant circulating strain, changing to A(H1N1) 2009 in December 2010. Emergency room and outpatient department ILI surveillance displayed similar trends. By March 31, 2011, there were 1,751 cases of influenza with severe complications; 50.1% reported underlying diseases. Of the reported cases, 128 deaths were associated with influenza. Among these, 93 (72.6%) were influenza A(H1N1) 2009 and 30 (23.4%) A(H3N2). Compared to the pandemic period, during the immediate post-pandemic period, increased number of hospitalizations and deaths were observed, and the patients were consistently older. CONCLUSIONS: Reemergence of influenza A(H1N1) 2009 during the 2010-11 influenza season had an intense activity with age distribution shift. To further mitigate the impact of future influenza epidemics, Taiwan must continue its multifaceted influenza surveillance systems, remain flexible with antiviral use policies, and revise the vaccine policies to include the population most at risk
Running away experience and psychoactive substance use among adolescents in Taiwan: multi-city street outreach survey
<p>Abstract</p> <p>Background</p> <p>This study aimed to examine: 1) the relationship between being a runaway and the time since the first absconding event and adolescent substance use; 2) whether different kinds of psychoactive substances have a different temporal relationship to the first absconding event; and 3) whether the various reasons for the first absconding event are associated with different risks of substance use.</p> <p>Methods</p> <p>Participants were drawn from the 2004-2006 nationwide outreach programs across 26 cities/towns in Taiwan. A total of 17,133 participants, age 12-18 years, who completed an anonymous questionnaire on their experience of running away and substances use and who were now living with their families, were included in the analysis.</p> <p>Results</p> <p>The lifetime risk of tobacco, alcohol, betel nut, and illegal drug/inhalant use increased steadily from adolescents who had experienced a trial runaway episode (one time lasting ≤ 1 day), to those with extended runaway experience (≥ 2 times or lasting > 1 day), when compared to those who had never ran away. Adolescents who had their first running away experience > 6 months previously had a greater risk of betel nut or illegal drug/inhalant use over the past 6-months than those with a similar experience within the last 6 months. Both alcohol and tobacco use were most frequently initiated before the first running away, whereas both betel nut and illegal drug/inhalant use were most frequently initiated after this event. When adolescents who were fleeing an unsatisfactory home life were compared to those who ran away for excitement, the risk of alcohol use was similar but the former tended to have a higher risk of tobacco, betel nut, and illegal drug/inhalant use.</p> <p>Conclusions</p> <p>More significant running away and a longer time since the first absconding experience were associated with more advanced substance involvement among adolescents now living in a family setting. Once adolescents had left home, they developed additional psychoactive substance problems, regardless of their reasons for running away. These findings have implications for caregivers, teachers, and healthcare workers when trying to prevent and/or intervening in adolescent substance use.</p
Nuclear Magnetic Resonance Imaging with 90 nm Resolution
Magnetic resonance imaging, based on the manipulation and detection of
nuclear spins, is a powerful imaging technique that typically operates on the
scale of millimeters to microns. Using magnetic resonance force microscopy, we
have demonstrated that magnetic resonance imaging of nuclear spins can be
extended to a spatial resolution better than 100 nm. The two-dimensional
imaging of 19F nuclei was done on a patterned CaF2 test object, and was enabled
by a detection sensitivity of roughly 1200 nuclear spins. To achieve this
sensitivity, we developed high-moment magnetic tips that produced field
gradients up to 1.4x10^6 T/m, and implemented a measurement protocol based on
force-gradient detection of naturally occurring spin fluctuations. The
resulting detection volume of less than 650 zl represents 60,000x smaller
volume than previous NMR microscopy and demonstrates the feasibility of pushing
magnetic resonance imaging into the nanoscale regime.Comment: 24 pages, 5 figure
- …
