958 research outputs found
A Quantum Scattering Interferometer
The collision of two ultra-cold atoms results in a quantum-mechanical
superposition of two outcomes: each atom continues without scattering and each
atom scatters as a spherically outgoing wave with an s-wave phase shift. The
magnitude of the s-wave phase shift depends very sensitively on the interaction
between the atoms. Quantum scattering and the underlying phase shifts are
vitally important in many areas of contemporary atomic physics, including
Bose-Einstein condensates, degenerate Fermi gases, frequency shifts in atomic
clocks, and magnetically-tuned Feshbach resonances. Precise measurements of
quantum scattering phase shifts have not been possible until now because, in
scattering experiments, the number of scattered atoms depends on the s-wave
phase shifts as well as the atomic density, which cannot be measured precisely.
Here we demonstrate a fundamentally new type of scattering experiment that
interferometrically detects the quantum scattering phase shifts of individual
atoms. By performing an atomic clock measurement using only the scattered part
of each atom, we directly and precisely measure the difference of the s-wave
phase shifts for the two clock states in a density independent manner. Our
method will give the most direct and precise measurements of ultracold
atom-atom interactions and will place stringent limits on the time variations
of fundamental constants.Comment: Corrected formatting and typo
Patient-centric trials for therapeutic development in precision oncology
An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine
Interleukin-1 polymorphisms associated with increased risk of gastric cancer
Helicobacter pylori infection is associated with a variety of clinical outcomes including gastric cancer and duodenal ulcer disease. The reasons for this variation are not clear, but the gastric physiological response is influenced by the severity and anatomical distribution of gastritis induced by H. pylori. Thus, individuals with gastritis predominantly localized to the antrum retain normal (or even high) acid secretion, whereas individuals with extensive corpus gastritis develop hypochlorhydria and gastric atrophy, which are presumptive precursors of gastric cancer. Here we report that interleukin-1 gene cluster polymorphisms suspected of enhancing production of interleukin-1-beta are associated with an increased risk of both hypochlorhydria induced by H. pylori and gastric cancer. Two of these polymorphism are in near-complete linkage disequilibrium and one is a TATA-box polymorphism that markedly affects DNA-protein interactions in vitro. The association with disease may be explained by the biological properties of interleukin-1-beta, which is an important pro-inflammatory cytokine and a powerful inhibitor of gastric acid secretion. Host genetic factors that affect interleukin-1-beta may determine why some individuals infected with H. pylori develop gastric cancer while others do no
A low density of 0.8 g/cc for the Trojan binary asteroid 617 Patroclus
The Trojan population consists of two swarms of asteroids following the same
orbit as Jupiter and located at the L4 and L5 Lagrange points of the
Jupiter-Sun system (leading and following Jupiter by 60 degrees). The asteroid
617 Patroclus is the only known binary Trojan (Merline et al. 2001). The orbit
of this double system was hitherto unknown. Here we report that the components,
separated by 680 km, move around the system centre of mass, describing roughly
a circular orbit. Using the orbital parameters, combined with thermal
measurements to estimate the size of the components, we derive a very low
density of 0.8 g/cc. The components of Patroclus are therefore very porous or
composed mostly of water ice, suggesting that they could have been formed in
the outer part of the solar system.Comment: 10 pages, 3 figures, 1 tabl
Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence
Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence
HBV quasispecies composition in Lamivudine-failed chronic hepatitis B patients and its influence on virological response to Tenofovir-based rescue therapy
The present study sought to evaluate the structure of HBV quasispecies in Lamivudine (LMV)-failed chronic hepatitis B (CHB) patients and its impact in defining the subsequent virological responses to Tenofovir (TDF)-based rescue-therapy. By analyzing HBV clones encompassing reverse transcriptase (RT) and surface (S) region from LMV-failed and treatment-naïve CHB patients, we identified 5 classical and 12 novel substitutions in HBV/RT and 9 substitutions in immune-epitopes of HBV/S that were significantly associated with LMV failure. In silico analysis showed spatial proximity of some of the newly-identified, mutated RT residues to the RT catalytic centre while most S-substitutions caused alteration in epitope hydrophobicity. TDF administration resulted in virological response in 60% of LMV-failed patients at 24-week but non-response in 40% of patients even after 48-weeks. Significantly high frequencies of 6 S-substitutions and one novel RT-substitution, rtH124N with 6.5-fold-reduced susceptibility to TDF in vitro, were noted at baseline in TDF non-responders than responders. Follow-up studies depicted greater evolutionary drift of HBV quasispecies and significant decline in frequencies of 3 RT and 6 S-substitutions in responder-subgroup after 24-week TDF-therapy while most variants persisted in non-responders. Thus, we identified the HBV-RT/S variants that could potentially predict unfavorable response to LMV/TDF-therapy and impede immune-mediated viral clearance
The freshwater Sponge Ephydatia Fluviatilis harbours diverse pseudomonas species (Gammaproteobacteria, Pseudomonadales) with broad-spectrum antimicrobial activity
Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction - Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value.European Regional Development Fund (ERDF) through the COMPETE (Operational Competitiveness Programme); national funds through FCT (Foundation for Science and Technology) [PEst-C/MAR/LA0015/2011]; FCT-funded project [PTDC/BIA-MIC/3865/2012]; Federation of European Microbiological Societies (FEMS)info:eu-repo/semantics/publishedVersio
The role of resveratrol on skeletal muscle cell differentiation and myotube hypertrophy during glucose restriction
Glucose restriction (GR) impairs muscle cell differentiation and evokes myotube atrophy. Resveratrol treatment in skeletal
muscle cells improves inflammatory-induced reductions in skeletal muscle cell differentiation. We therefore hypothesised
that resveratrol treatment would improve muscle cell differentiation and myotube hypertrophy in differentiating C2C12
myoblasts and mature myotubes during GR. Glucose restriction at 0.6 g/L (3.3 mM) blocked differentiation and myotube
hypertrophy versus high-glucose (4.5 g/L or 25 mM) differentiation media (DM) conditions universally used for myoblast
culture. Resveratrol (10 μM) treatment increased SIRT1 phosphorylation in DM conditions, yet did not improve differentiation
when administered to differentiating myoblasts in GR conditions. Resveratrol did evoke increases in hypertrophy of mature
myotubes under DM conditions with corresponding elevated Igf-I and Myhc7 gene expression, coding for the ‘slow’ type I
MYHC protein isoform. Inhibition of SIRT1 via EX-527 administration (100 nM) also reduced myotube diameter and area
in DM conditions and resulted in lower gene expression of Myhc 1, 2 and 4 coding for ‘intermediate’ and ‘faster’ IIx, IIa
and IIb protein isoforms, respectively. Resveratrol treatment did not appear to modulate phosphorylation of energy-sensing
protein AMPK or protein translation initiator P70S6K. Importantly, in mature myotubes, resveratrol treatment was able to
ameliorate reduced myotube growth in GR conditions over an acute 24-h period, but not over 48–72 h. Overall, resveratrol
evoked myotube hypertrophy in DM conditions while favouring ‘slower’ Myhc gene expression and acutely ameliorated
impaired myotube growth observed during glucose restriction
A systematic review of physiological methods in rodent pharmacological MRI studies
Rationale: Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic.
Objectives: This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes.
Methods: A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded.
Results: We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures.
Conclusions: Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges
- …
