2,997 research outputs found
Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder
Background Recurrent microdeletions and microduplications of w555 kb at 16p11.2 confer susceptibility to autism spectrum disorder (ASD) in up to 1% of ASD patients. No physical or behavioural features have been identified that distinguish these individuals as having a distinct ASD subtype, but clinical data are limited. Methods We report five autistic probands identified by microarray analysis with copy number variation (CNV) of 16p11.2 (three deletions, two duplications). Each patient was assessed for ASD and dysmorphic features. We also describe a deletion positive 26-month-old female who has developmental delay (DD) and autistic features. Results Proband 1 (female with ASD, de novo deletion) is not dysmorphic. Proband 2 (male with autism, de novo deletion) and proband 3 and his brother (males with autism, inherited deletions) are dysmorphic, but the two probands do not resemble one another. The mother of proband 3 has mild mental retardation (MR), minor dysmorphism and meets the criteria for ASD. Proband 4 (dysmorphic autistic male, de novo duplication) had a congenital diaphragmatic hernia. Proband 5 (nondysmorphic ASD female with a duplication) has two apparently healthy duplication positive relatives. Probands 1 and 2 have deletion negative siblings with ASD and Asperger syndrome, respectively. Proband 6 (a female with DD and an inherited duplication) is dysmorphic, but has oligohydramnios sequence. Conclusions The phenotypic spectrum associated with CNV at 16p11.2 includes ASD, MR/DD and/or possibly other primary psychiatric disorders. Compared with the microduplications, the reciprocal microdeletions are more likely to be penetrant and to be associated with nonspecific major or minor dysmorphism. There are deletion positive ASD probands with a less severe phenotype than deletion negative ASD siblings underscoring the significant phenotypic heterogeneity.published_or_final_versio
Genetic variation for tuber mineral concentrations in accessions of the Commonwealth Potato Collection
The variation in tuber mineral concentrations amongst accessions of wild tuber-bearing Solanum species in the Commonwealth Potato Collection (CPC) was evaluated under greenhouse conditions. Selected CPC accessions, representing the eco-geographical distribution of wild potatoes, were grown to maturity in peat-based compost under controlled conditions. Tubers from five plants of each accession were harvested, bulked and their mineral composition analysed. Among the germplasm investigated, there was a greater range in tuber concentrations of some elements of nutritional significance to both plants and animals, such as (Ca, Fe and Zn; 6.7, 3.6, and 4.5-fold respectively) than others, such as (K, P and S; all <3-fold). Significant positive correlations were found between mean altitude of the species' range and tuber P, K, Cu and Mg concentrations. The amount of diversity observed in the CPC collection indicates the existence of wide differences in tuber mineral accumulation among different potato accessions. This might be useful in breeding for nutritional improvement of potato tubers
De novo large rare copy-number variations contribute to conotruncal heart disease in Chinese patients
published_or_final_versio
Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
The positions of nucleosomes in eukaryotic genomes determine which parts of
the DNA sequence are readily accessible for regulatory proteins and which are
not. Genome-wide maps of nucleosome positions have revealed a salient pattern
around transcription start sites, involving a nucleosome-free region (NFR)
flanked by a pronounced periodic pattern in the average nucleosome density.
While the periodic pattern clearly reflects well-positioned nucleosomes, the
positioning mechanism is less clear. A recent experimental study by Mavrich et
al. argued that the pattern observed in S. cerevisiae is qualitatively
consistent with a `barrier nucleosome model', in which the oscillatory pattern
is created by the statistical positioning mechanism of Kornberg and Stryer. On
the other hand, there is clear evidence for intrinsic sequence preferences of
nucleosomes, and it is unclear to what extent these sequence preferences affect
the observed pattern. To test the barrier nucleosome model, we quantitatively
analyze yeast nucleosome positioning data both up- and downstream from NFRs.
Our analysis is based on the Tonks model of statistical physics which
quantifies the interplay between the excluded-volume interaction of nucleosomes
and their positional entropy. We find that although the typical patterns on the
two sides of the NFR are different, they are both quantitatively described by
the same physical model, with the same parameters, but different boundary
conditions. The inferred boundary conditions suggest that the first nucleosome
downstream from the NFR (the +1 nucleosome) is typically directly positioned
while the first nucleosome upstream is statistically positioned via a
nucleosome-repelling DNA region. These boundary conditions, which can be
locally encoded into the genome sequence, significantly shape the statistical
distribution of nucleosomes over a range of up to ~1000 bp to each side.Comment: includes supporting materia
Strategically Equivalent Contests
Using a two-player Tullock-type contest, we show that intuitively and structurally different contests can be strategically equivalent. Strategically equivalent contests generate the same best response functions and, as a result, the same equilibrium efforts. However, strategically equivalent contests may yield different equilibrium payoffs. We propose a simple two-step procedure to identify strategically equivalent contests. Using this procedure, we identify contests that are strategically equivalent to the original Tullock contest, and provide new examples of strategically equivalent contests. Finally, we discuss possible contest design applications and avenues for future theoretical and empirical research
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
Avoiding obscure topics and generalising findings produces higher impact research
Much academic research is never cited and may be rarely read, indicating wasted effort from the authors, referees and publishers. One reason that an article could be ignored is that its topic is, or appears to be, too obscure to be of wide interest, even if excellent scholarship produced it. This paper reports a word frequency analysis of 874,411 English article titles from 18 different Scopus natural, formal, life and health sciences categories 2009-2015 to assess the likelihood that research on obscure (rarely researched) topics is less cited. In all categories examined, unusual words in article titles associate with below average citation impact research. Thus, researchers considering obscure topics may wish to reconsider, generalise their study, or to choose a title that reflects the wider lessons that can be drawn. Authors should also consider including multiple concepts and purposes within their titles in order to attract a wider audience
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.
BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNβ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
- …
