62 research outputs found

    Spectrum from the warped compactifications with the de Sitter universe

    Full text link
    We discuss the spectrum of the tensor metric perturbations and the stability of warped compactifications with the de Sitter spacetime in the higher-dimensional gravity. The spacetime structure is given in terms of the warped product of the non-compact direction, the spherical internal dimensions and the four-dimensional de Sitter spacetime. To realize a finite bulk volume, we construct the brane world model, using the cut-copy-paste method. Then, we compactify the spherical directions on the brane. In any case, we show the existence of the massless zero mode and the mass gap of it with massive Kaluza-Klein modes. Although the brane involves the spherical dimensions, no light massive mode is excited. We also investigate the scalar perturbations, and show that the model is unstable due to the existence of a tachyonic bound state, which seems to have the universal negative mass square, irrespective of the number of spacetime dimensions.Comment: Journal version (JHEP

    All-sky analysis of astrochronometric signals induced by gravitational waves

    Get PDF
    We introduce a unified spin-weighted formalism to describe both timing and astrometric perturbations induced on astrophysical point sources by gravitational waves using a complex spin field on the sphere. This allows the use of spin-weighted spherical harmonics to analyze “astrochronometric” observables. This approach simplifies the interpretation and simulation of anisotropies induced in the observables by gravitational waves. It also allows a simplified derivation of angular cross-spectra of the observables and their relationship with generalized Hellings-Downs correlation functions. The spin-weighted formalism also allows an explicit connection between correlation components and the spin of gravitational wave polarizations and any presence of chirality. We also calculate expected signal-to-noise ratios for observables to compare the utility of timing and deflection observables

    Geodesic noise and gravitational wave observations by pulsar timing arrays

    Get PDF
    Signals from millisecond pulsars travel to us on geodesics along the line-of-sight that are affected by the space–time metric. The exact path-geometry and redshifting along the geodesics determine the observed Time-of-Arrival (ToA) of the pulses. The metric is determined by the distribution of dark matter, gas, and stars in the galaxy and, in the final stages of travel, by the distribution of solar system bodies. The inhomogeneous distribution of stellar masses can have a small but significant statistical effect on the ToAs through the perturbation of geodesics. This will result in additional noise in ToA observations that may affect Pulsar Timing Array (PTA) constraints on gravitational waves at very low frequencies. We employ a simple model for the stellar distribution in our galaxy to estimate the scale of both static and dynamic sources of what we term generically “geodesic noise”. We find that geodesic noise has a standard deviation of (10) ns for typical lines-of-sight. This suggests geodesic noise is relevant for estimates of PTA sensitivity and may limit future efforts for detection of gravitational waves by PTAs

    The Thermal Design, Characterization, and Performance of the SPIDER Long-Duration Balloon Cryostat

    Full text link
    We describe the SPIDER flight cryostat, which is designed to cool six millimeter-wavelength telescopes during an Antarctic long-duration balloon flight. The cryostat, one of the largest to have flown on a stratospheric payload, uses liquid helium-4 to deliver cooling power to stages at 4.2 and 1.6 K. Stainless steel capillaries facilitate a high flow impedance connection between the main liquid helium tank and a smaller superfluid tank, allowing the latter to operate at 1.6 K as long as there is liquid in the 4.2 K main tank. Each telescope houses a closed cycle helium-3 adsorption refrigerator that further cools the focal planes down to 300 mK. Liquid helium vapor from the main tank is routed through heat exchangers that cool radiation shields, providing negative thermal feedback. The system performed successfully during a 17 day flight in the 2014-2015 Antarctic summer. The cryostat had a total hold time of 16.8 days, with 15.9 days occurring during flight.Comment: 15 pgs, 17 fig

    On graviton non-Gaussianities during inflation

    Get PDF
    We consider the most general three point function for gravitational waves produced during a period of exactly de Sitter expansion. The de Sitter isometries constrain the possible shapes to only three: two preserving parity and one violating parity. These isometries imply that these correlation functions should be conformal invariant. One of the shapes is produced by the ordinary gravity action. The other shape is produced by a higher derivative correction and could be as large as the gravity contribution. The parity violating shape does not contribute to the bispectrum [1106.3228, 1108.0175], even though it is present in the wavefunction. We also introduce a spinor helicity formalism to describe de Sitter gravitational waves with circular polarization. These results also apply to correlation functions in Anti-de Sitter space. They also describe the general form of stress tensor correlation functions, in momentum space, in a three dimensional conformal field theory. Here all three shapes can arise, including the parity violating one.Comment: 51 pages, v2: Corrected statement about parity violation in the gravitational wave bispectrum. Some other changes and references adde

    Comparison of maximum-likelihood mapping methods for gravitational-wave backgrounds

    Get PDF
    Detection of a stochastic background of gravitational waves is likely to occur in the next few years. Beyond searches for the isotropic component of a stochastic gravitational-wave background, there have been various mapping methods proposed to target anisotropic backgrounds. Some of these methods have been applied to data taken by the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo. Specifically, these directional searches have focused on mapping the intensity of the signal on the sky via maximum-likelihood solutions. We compare this intensity mapping approach to a previously proposed, but never employed, amplitude-phase mapping method to understand whether this latter approach may be employed in future searches. We build up our understanding of the differences between these two approaches by analyzing simple toy models of time-stream data, and we run mock-data mapping tests for the two methods. We find that the amplitude-phase method is only applicable to the case of a background which is phase coherent on large scales or, at the very least, has an intrinsic coherence scale that is larger than the resolution of the detector. Otherwise, the amplitude-phase mapping method leads to an overall loss of information, with respect to both phase and amplitude. Since we do not expect these phase-coherent properties to hold for any of the gravitational-wave background signals we hope to detect in the near future, we conclude that intensity mapping is the preferred method for such backgrounds

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background

    Full text link
    Cosmology's standard model posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales (Bennett {\it et al.}, 2003 ; Spergel {\it et al.}, 2003). Temperature correlations across the microwave sky match expectations on scales narrower than 6060^{\circ}, yet vanish on scales wider than 6060^{\circ}. Researchers are now seeking an explanation of the missing wide-angle correlations (Contaldi {\it et al.}, 2003 ; Cline {\it et al.}, 2003). One natural approach questions the underlying geometry of space, namely its curvature (Efstathiou, 2003) and its topology (Tegmark {\it et al.}, 2003). In an infinite flat space, waves from the big bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 6060^{\circ} means the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite, positively curved space -- the Poincar\'e dodecahedral space -- which accounts for WMAP's observations with no fine-tuning required. Circle searching (Cornish, Spergel and Starkman, 1998) may confirm the model's topological predictions, while upcoming Planck Surveyor data may confirm its predicted density of Ω01.013>1\Omega_0 \simeq 1.013 > 1. If confirmed, the model will answer the ancient question of whether space is finite or infinite, while retaining the standard Friedmann-Lema\^\i{}tre foundation for local physics.Comment: 10 pages, 4 figures. This is a slightly longer version of the paper published in Nature 425, p. 593, 200

    Parity Violation in Graviton Non-gaussianity

    Full text link
    We study parity violation in graviton non-gaussianity generated during inflation. We develop a useful formalism to calculate graviton non-gaussianity. Using this formalism, we explicitly calculate the parity violating part of the bispectrum for primordial gravitational waves in the exact de Sitter spacetime and prove that no parity violation appears in the non-gaussianity. We also extend the analysis to slow-roll inflation and find that the parity violation of the bispectrum is proportional to the slow-roll parameter. We argue that parity violating non-gaussianity can be tested by the CMB. Our results are also useful for calculating three-point function of the stress tensor in the non-conformal field theory through the gravity/field theory correspondence.Comment: v2:style changed to JHEP, 21 pages, references added; v3: published version in JHE
    corecore