346 research outputs found

    Experiments in no-impact control of dingoes: Comment on Allen et al. 2013

    Full text link
    There has been much recent debate in Australia over whether lethal control of dingoes incurs environmental costs, particularly by allowing increase of populations of mesopredators such as red foxes and feral cats. Allen et al. (2013) claim to show in their recent study that suppression of dingo activity by poison baiting does not lead to mesopredator release, because mesopredators are also suppressed by poisoning. We show that this claim is not supported by the data and analysis reported in Allen et al.'s paper. © 2014 Johnson et al.; licensee BioMed Central Ltd

    Population dynamics of desert mammals: Similarities and contrasts within a multispecies assemblage

    Full text link
    © 2016 Greenville et al. Understanding the temporal and spatial dynamics of species populations remains a key focus of population biology, providing vital insight into the drivers that influence demography and into sub-populations that are vulnerable to extinction. Across regional landscapes, spatially separated sub-populations may fluctuate in synchrony, or exhibit sub-structuring due to subtle differences in local intrinsic and extrinsic factors. Using a long-term data set (17-22 yr) obtained from a large (8000 km2) study region in arid central Australia, we tested firstly for regional synchrony in annual rainfall and the dynamics of five small mammal species across nine widely separated sites. Using Moran's theorem, we predicted that the spatial correlation between the regional sub-populations of these species would equal that between local density-independent conditions (annual rainfall). For species that showed synchronous spatial dynamics, we then used multivariate state-space (MARSS) models to predict that regional rainfall would be positively associated with their populations, whereas species with asynchronous sub-populations would be influenced largely by other factors. For these latter species, we used MARSS models to test four hypotheses. These were that sub-population structures: (1) were asynchronous and governed by local site-specific factors, (2) differed between oasis and non-oasis sites, (3) differed between burnt and unburnt sites, and (4) differed between three sub-regions with different rainfall gradients. We found that the spatial population dynamics of our study small mammals differed between and within families. Two species of insectivorous dasyurid marsupials showed asynchronous dynamics, which most likely tracked local conditions, whereas a larger carnivorous marsupial and two species of rodents had strongly synchronous dynamics. These latter species exhibited similar spatial correlations to local and regional rainfall events, providing evidence that the Moran effect operates for some, but not all, species in this arid system. Our results suggest that small mammal populations do not respond in similar ways to shared environmental drivers in arid regions, and hence will vary in their responses to climate change. As arid lands globally are predicted to face climatic shifts that will exacerbate rainfall-drought cycles, we suggest that future work focuses on exploring these responses at different spatial scales across multiple dryland taxa

    A review of Elliott trapping methods for small mammals in Australia.

    Full text link

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey

    Get PDF
    Quantifying the relative impacts of top-down vs. bottom-up control of ecosystems remains a controversial issue, with debate often focusing on the perennial question of how predators affect prey densities. To assess predator impacts, we performed a worldwide meta-analysis of field experiments in which the densities of terrestrial vertebrate predators were manipulated and the responses of their terrestrial vertebrate prey were measured. Our results show that predation indeed limits prey populations, as prey densities change substantially after predator manipulations. The main determinant of the result of an experiment was the efficiency of predator manipulation. Positive impacts of predator manipulation appeared to increase with duration of the experiment for non-cyclic prey, while the opposite was true for cyclic prey. In addition, predator manipulation showed a large positive impact on cyclic prey at low prey densities, but had no obvious impact at peak prey densities. As prey population densities generally respond predictably to predator manipulations, we suggest that control of introduced vertebrate predators can be used to effectively conserve and manage native wildlife. However, care should be taken when controlling native predators, especially apex species, owing to their importance as strong interactors and the biodiversity value of their habitats. We discuss gaps in our knowledge of predator-prey relationships and methodological issues related to manipulation experiments. An important guideline for future studies is that adequate monitoring of predator numbers before and during the experiment is the only way to ensure that observed responses in prey populations are actually caused by changes in predation impacts

    Effects of long-term exposure to an electronic containment system on the behaviour and welfare of domestic cats

    Get PDF
    Free-roaming cats are exposed to a variety of risks, including involvement in road traffic accidents. One way of mitigating these risks is to contain cats, for example using an electronic boundary fence system that delivers an electric ‘correction’ via a collar if a cat ignores a warning cue and attempts to cross the boundary. However, concerns have been expressed over the welfare impact of such systems. Our aim was to determine if long-term exposure to an electronic containment system was associated with reduced cat welfare. We compared 46 owned domestic cats: 23 cats that had been contained by an electronic containment system for more than 12 months (AF group); and 23 cats with no containment system that were able to roam more widely (C group). We assessed the cats’ behavioural responses and welfare via four behavioural tests (unfamiliar person test; novel object test; sudden noise test; cognitive bias test) and an owner questionnaire. In the unfamiliar person test, C group lip-licked more than the AF group, whilst the AF group looked at, explored and interacted more with the unfamiliar person than C group. In the novel object test, the AF group looked at and explored the object more than C group. No significant differences were found between AF and C groups for the sudden noise or cognitive bias tests. Regarding the questionnaire, C group owners thought their cats showed more irritable behaviour and AF owners thought that their cats toileted inappropriately more often than C owners. Overall, AF cats were less neophobic than C cats and there was no evidence of significant differences between the populations in general affective state. These findings indicate that an electronic boundary fence with clear pre-warning cues does not impair the long term quality of life of cat

    Top predators constrain mesopredator distributions

    Get PDF
    © The Author(s) 2017. Top predators can suppress mesopredators by killing them, competing for resources and instilling fear, but it is unclear how suppression of mesopredators varies with the distribution and abundance of top predators at large spatial scales and among different ecological contexts. We suggest that suppression of mesopredators will be strongest where top predators occur at high densities over large areas. These conditions are more likely to occur in the core than on the margins of top predator ranges. We propose the Enemy Constraint Hypothesis, which predicts weakened top-down effects on mesopredators towards the edge of top predators' ranges. Using bounty data from North America, Europe and Australia we show that the effects of top predators on mesopredators increase from the margin towards the core of their ranges, as predicted. Continuing global contraction of top predator ranges could promote further release of mesopredator populations, altering ecosystem structure and contributing to biodiversity loss
    corecore