341 research outputs found

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    A systematic review of physiological methods in rodent pharmacological MRI studies

    Get PDF
    Rationale: Pharmacological magnetic resonance imaging (phMRI) provides an approach to study effects of drug challenges on brain processes. Elucidating mechanisms of drug action helps us to better understand the workings of neurotransmitter systems, map brain function or facilitate drug development. phMRI is increasingly used in preclinical research employing rodent models; however, data interpretation and integration are complicated by the use of different experimental approaches between laboratories. In particular, the effects of different anaesthetic regimes upon neuronal and haemodynamic processes and baseline physiology could be problematic. Objectives: This paper investigates how differences in phMRI research methodologies are manifested and considers associated implications, placing particular emphasis on choice of anaesthetic regimes. Methods: A systematic review of rodent phMRI studies was conducted. Factors such as those describing anaesthetic regimes (e.g. agent, dosage) and parameters relating to physiological maintenance (e.g. ventilatory gases) and MRI method were recorded. Results: We identified 126 eligible studies and found that the volatile agents isoflurane (43.7 %) and halothane (33.3 %) were most commonly used for anaesthesia, but dosage and mixture of ventilatory gases varied substantially between laboratories. Relevant physiological parameters were usually recorded, although 32 % of studies did not provide cardiovascular measures. Conclusions: Anaesthesia and animal preparation can influence phMRI data profoundly. The variation of anaesthetic type, dosage regime and ventilatory gases makes consolidation of research findings (e.g. within a specific neurotransmitter system) difficult. Standardisation of a small(er) number of preclinical phMRI research methodologies and/or increased consideration of approaches that do not require anaesthesia is necessary to address these challenges

    A novel outbred mouse model of 2009 pandemic influenza and bacterial co-infection severity

    Get PDF
    Influenza viruses pose a significant health risk and annually impose a great cost to patients and the health care system. The molecular determinants of influenza severity, often exacerbated by secondary bacterial infection, are largely unclear. We generated a novel outbred mouse model of influenza virus, Staphylococcus aureus, and coinfection utilizing influenza A/CA/07/2009 virus and S. aureus (USA300). Outbred mice displayed a wide range of pathologic phenotypes following influenza virus or co-infection ranging broadly in severity. Influenza viral burden positively correlated with weight loss although lung histopathology did not. Inflammatory cytokines including IL-6, TNF-α, G-CSF, and CXCL10 positively correlated with both weight loss and viral burden. In S. aureus infection, IL-1β, G-CSF, TNF-α, and IL-6 positively correlated with weight loss and bacterial burden. In co-infection, IL-1β production correlated with decreased weight loss suggesting a protective role. The data demonstrate an approach to identify biomarkers of severe disease and to understand pathogenic mechanisms in pneumonia. © 2013 McHugh et al

    The exoskeletons are here

    Get PDF
    It is a fantastic time for the field of robotic exoskeletons. Recent advances in actuators, sensors, materials, batteries, and computer processors have given new hope to creating the exoskeletons of yesteryear's science fiction. While the most common goal of an exoskeleton is to provide superhuman strength or endurance, scientists and engineers around the world are building exoskeletons with a wide range of diverse purposes. Exoskeletons can help patients with neurological disabilities improve their motor performance by providing task specific practice. Exoskeletons can help physiologists better understand how the human body works by providing a novel experimental perturbation. Exoskeletons can even help power mobile phones, music players, and other portable electronic devices by siphoning mechanical work performed during human locomotion. This special thematic series on robotic lower limb exoskeletons and orthoses includes eight papers presenting novel contributions to the field. The collective message of the papers is that robotic exoskeletons will contribute in many ways to the future benefit of humankind, and that future is not that distant

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    Get PDF
    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission

    The Natural History of Trachoma Infection and Disease in a Gambian Cohort with Frequent Follow-Up

    Get PDF
    Trachoma is an infectious disease of the eye that causes blindness in many of the poorest parts of the world. In this paper, we use a novel statistical approach to estimate the characteristics of this disease among people living in The Gambia who were examined every 2 weeks over a 6-month period. We found that the typical duration of infection with Chlamydia trachomatis and of clinically active disease were significantly longer than previously estimated. We tested different hypotheses about the natural history of trachoma that explain the relationship between infection and disease observed in the field. We also confirmed that disease lasts significantly longer among young children under 5 years old compared with older children and adults, even after accounting for high rates of re-infection in this age group, consistent with the development of immunity with age. The long duration of infection, especially among younger children, contributes to the persistence and gradual return of trachoma after community-wide treatment with azithromycin. This implies the need for high treatment coverage if infection is to be eliminated from a community, even where the return of infection after treatment is seen to be slow

    Secondary mineral formation associated with respiration of nontronite, NAu-1 by iron reducing bacteria

    Get PDF
    Experimental batch and miscible-flow cultures were studied in order to determine the mechanistic pathways of microbial Fe(III) respiration in ferruginous smectite clay, NAu-1. The primary purpose was to resolve if alteration of smectite and release of Fe precedes microbial respiration. Alteration of NAu-1, represented by the morphological and mineralogical changes, occurred regardless of the extent of microbial Fe(III) reduction in all of our experimental systems, including those that contained heat-killed bacteria and those in which O(2), rather than Fe(III), was the primary terminal electron acceptor. The solid alteration products observed under transmission electron microscopy included poorly crystalline smectite with diffuse electron diffraction signals, discrete grains of Fe-free amorphous aluminosilicate with increased Al/Si ratio, Fe-rich grains, and amorphous Si globules in the immediate vicinity of bacterial cells and extracellular polymeric substances. In reducing systems, Fe was also found as siderite. The small amount of Fe partitioned to the aqueous phase was primarily in the form of dissolved Fe(III) species even in the systems in which Fe(III) was the primary terminal electron acceptor for microbial respiration. From these observations, we conclude that microbial respiration of Fe(III) in our laboratory systems proceeded through the following: (1) alteration of NAu-1 and concurrent release of Fe(III) from the octahedral sheets of NAu-1; and (2) subsequent microbial respiration of Fe(III)
    corecore