22 research outputs found

    FADD phosphorylation is critical for cell cycle regulation in breast cancer cells

    Get PDF
    Anti-oestrogen therapy is effective for control of hormone receptor-positive breast cancers, although the detailed molecular mechanisms, including signal transduction, remain unclear. We demonstrated here that long-term tamoxifen treatment causes G2/M cell cycle arrest through c-jun N-terminal kinase (JNK) activation, which is dependent on phosphorylation of Fas-associated death domain-containing protein (FADD) at 194 serine in an oestrogen (ER) receptor-positive breast cancer cell line, MCF-7. Expression of a dominant negative mutant form of MKK7, a kinase upstream of JNK, or mutant FADD (S194A) in MCF-7 cells suppressed the cytotoxicity of long-term tamoxifen treatment. Of great interest, similar signallings could be evoked by paclitaxel, even in an ER-negative cell line, MDA-MB-231. In addition, immunohistochemical analysis using human breast cancer specimens showed a close correlation between phosphorylated JNK and FADD expression, both being significantly reduced in cases with metastatic potential. We conclude that JNK-mediated phosphorylation of FADD plays an important role in the negative regulation of cell growth and metastasis, independent of the ER status of a breast cancer, so that JNK/FADD signals might be promising targets for cancer therapy

    Rapid assessment of the risk of SARS-CoV-2 importation: case study and lessons learned

    No full text
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak. Here we describe a rapid risk assessment framework that was developed in February 2020 to support time-critical decisions on the risk of SARS-CoV-2 importation into Australia. We briefly describe the context in which our framework was developed, the framework itself, and provide an example of the type of decision support provided to the Australian government. We then report a critical evaluation of the modelling choices made in February 2020, assessing the impact of our assumptions on estimated rates of importation, and provide a summary of "lessons learned". The framework presented and evaluated here provides a flexible approach to rapid assessment of importation risk, of relevance to current and future pandemic scenarios

    COVID-19 vaccine coverage targets to inform reopening plans in a low incidence setting

    No full text
    Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond
    corecore