13 research outputs found

    Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We characterized variation and chemical composition of epicuticular hydrocarbons (CHCs) in the seven species of the <it>Drosophila buzzatii </it>cluster with gas chromatography/mass spectrometry. Despite the critical role of CHCs in providing resistance to desiccation and involvement in communication, such as courtship behavior, mating, and aggregation, few studies have investigated how CHC profiles evolve within and between species in a phylogenetic context. We analyzed quantitative differences in CHC profiles in populations of the <it>D. buzzatii </it>species cluster in order to assess the concordance of CHC differentiation with species divergence.</p> <p>Results</p> <p>Thirty-six CHC components were scored in single fly extracts with carbon chain lengths ranging from C<sub>29 </sub>to C<sub>39</sub>, including methyl-branched alkanes, <it>n</it>-alkenes, and alkadienes. Multivariate analysis of variance revealed that CHC amounts were significantly different among all species and canonical discriminant function (CDF) analysis resolved all species into distinct, non-overlapping groups. Significant intraspecific variation was found in different populations of <it>D. serido </it>suggesting that this taxon is comprised of at least two species. We summarized CHC variation using CDF analysis and mapped the first five CHC canonical variates (CVs) onto an independently derived <it>period </it>(<it>per</it>) gene + chromosome inversion + mtDNA COI gene for each sex. We found that the COI sequences were not phylogenetically informative due to introgression between some species, so only <it>per </it>+ inversion data were used. Positive phylogenetic signal was observed mainly for CV1 when parsimony methods and the test for serial independence (TFSI) were used. These results changed when no outgroup species were included in the analysis and phylogenetic signal was then observed for female CV3 and/or CV4 and male CV4 and CV5. Finally, removal of divergent populations of <it>D. serido </it>significantly increased the amount of phylogenetic signal as up to four out of five CVs then displayed positive phylogenetic signal.</p> <p>Conclusions</p> <p>CHCs were conserved among species while quantitative differences in CHC profiles between populations and species were statistically significant. Most CHCs were species-, population-, and sex-specific. Mapping CHCs onto an independently derived phylogeny revealed that a significant portion of CHC variation was explained by species' systematic affinities indicating phylogenetic conservatism in the evolution of these hydrocarbon arrays, presumptive waterproofing compounds and courtship signals as in many other drosophilid species.</p

    Fungal Diversity Associated with Hawaiian Drosophila Host Plants

    Get PDF
    Hawaiian Drosophila depend primarily, sometimes exclusively, on specific host plants for oviposition and larval development, and most specialize further on a particular decomposing part of that plant. Differences in fungal community between host plants and substrate types may establish the basis for host specificity in Hawaiian Drosophila. Fungi mediate decomposition, releasing plant micronutrients and volatiles that can indicate high quality substrates and serve as cues to stimulate oviposition. This study addresses major gaps in our knowledge by providing the first culture-free, DNA-based survey of fungal diversity associated with four ecologically important tree genera in the Hawaiian Islands. Three genera, Cheirodendron, Clermontia, and Pisonia, are important host plants for Drosophila. The fourth, Acacia, is not an important drosophilid host but is a dominant forest tree. We sampled fresh and rotting leaves from all four taxa, plus rotting stems from Clermontia and Pisonia. Based on sequences from the D1/D2 domain of the 26S rDNA gene, we identified by BLAST search representatives from 113 genera in 13 fungal classes. A total of 160 operational taxonomic units, defined on the basis of ≥97% genetic similarity, were identified in these samples, but sampling curves show this is an underestimate of the total fungal diversity present on these substrates. Shannon diversity indices ranged from 2.0 to 3.5 among the Hawaiian samples, a slight reduction compared to continental surveys. We detected very little sharing of fungal taxa among the substrates, and tests of community composition confirmed that the structure of the fungal community differed significantly among the substrates and host plants. Based on these results, we hypothesize that fungal community structure plays a central role in the establishment of host preference in the Hawaiian Drosophila radiation
    corecore