47 research outputs found
Creating the ‘ethics industry': Mary Warnock, in vitro fertilization and the history of bioethics in Britain
Recent decades have seen a shift in the management and discussion of biomedicine. Issues once considered by doctors and scientists are now handled by a diverse array of participants, including philosophers, lawyers, theologians and lay representatives. This new approach, known as ‘bioethics', has become the norm in regulatory committees and public debate. In this article, I argue that bioethics emerged as a valued enterprise in Britain during the 1980s because it fulfilled, and linked, the concerns of several groups. My analysis centres on the moral philosopher Mary Warnock, who chaired a government inquiry into human fertilization and embryology between 1982 and 1984, and became a strong advocate of bioethics. I detail how Warnock's promotion of bioethics tallied with the Conservative government's desire for increased surveillance of hitherto autonomous professions – while fulfilling her own belief that philosophers should engage in public affairs. And I also show that Warnock simultaneously promoted bioethics to doctors and scientists as an essential safeguard against declining political and public trust. This stance, I argue, framed bioethics as a vital intermediary between politics, the public, and biomedicine, and explains the growth and endurance of what the Guardian identified as an ethics industry
Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling
The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies
EDHF: spreading the influence of the endothelium.
Our view of the endothelium was transformed around 30 years ago, from one of an inert barrier to that of a key endocrine organ central to cardiovascular function. This dramatic change followed the discoveries that endothelial cells (ECs) elaborate the vasodilators prostacyclin and nitric oxide. The key to these discoveries was the use of the quintessentially pharmacological technique of bioassay. Bioassay also revealed endothelium-derived hyperpolarizing factor (EDHF), particularly important in small arteries and influencing blood pressure and flow distribution. The basic idea of EDHF as a diffusible factor causing smooth muscle hyperpolarization (and thus vasodilatation) has evolved into one of a complex pathway activated by endothelial Ca(2+) opening two Ca(2+) -sensitive K(+) -channels, K(Ca)2.3 and K(Ca)3.1. Combined application of apamin and charybdotoxin blocked EDHF responses, revealing the critical role of these channels as iberiotoxin was unable to substitute for charybdotoxin. We showed these channels are arranged in endothelial microdomains, particularly within projections towards the adjacent smooth muscle, and close to interendothelial gap junctions. Activation of K(Ca) channels hyperpolarizes ECs, and K(+) efflux through them can act as a diffusible 'EDHF' stimulating Na(+) /K(+) -ATPase and inwardly rectifying K-channels. In parallel, hyperpolarizing current can spread from the endothelium to the smooth muscle through myoendothelial gap junctions upon endothelial projections. The resulting radial hyperpolarization mobilized by EDHF is complemented by spread of hyperpolarization along arteries and arterioles, effecting distant dilatation dependent on the endothelium. So the complexity of the endothelium still continues to amaze and, as knowledge evolves, provides considerable potential for novel approaches to modulate blood pressure
Anandamide reduces infarct size in rat isolated hearts subjected to ischaemia-reperfusion by a novel cannabinoid mechanism
1. Although the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide share a similar pharmacology, 2-AG reportedly limits myocardial ischaemia–reperfusion injury whereas anandamide does not. We therefore investigated whether or not anandamide reduces infarct size and which, if any, of the known cannabinoid-signalling pathways are involved. 2. Rat isolated perfused hearts were subjected to global, no-flow ischaemia (30 min) and reperfusion (1 h). Agonists were present from 5 min before ischaemia until the end of reperfusion. Antagonists, where used, were present throughout the protocol. Recovery of left ventricular developed pressure and coronary flow was incomplete in control hearts and not significantly affected by any drug treatment. 3. In vehicle-treated hearts, 26±3% (n=13) of the left ventricle was infarcted at the end of reperfusion. Infarction of the left ventricle was significantly reduced after 1 μM anandamide (10±1%, n=7) or 1 μM methanandamide (12±4%, n=6) but not 1 μM HU210. Neither ACPA (1 μM; CB(1) receptor agonist) nor JWH133 (1 μM; CB(2) receptor agonist), individually or combined significantly affected infarct size. 4. Anandamide (1 μM) did not reduce infarct size in the presence of the CB(1) receptor antagonist rimonabant (SR141716A, 1 μM) or the CB(2) receptor antagonist, SR144528 (1 μM). 5. Despite sensitivity to CB(1) and CB(2) receptor antagonists, the infarct-limiting action of anandamide was not mimicked by agonists selective for CB(1) or CB(2) receptors suggesting the involvement of a novel cannabinoid site of action
Endothelial nitric oxide suppresses action-potential-like transient spikes and vasospasm in small resistance arteries
Endothelial dysfunction in small arteries is a ubiquitous, early feature of cardiovascular disease, including hypertension. Dysfunction reflects reduced bioavailability of endothelium-derived nitric oxide (NO) and depressed endothelium-dependent hyperpolarization that enhances vasoreactivity. We measured smooth muscle membrane potential and tension, smooth muscle calcium, and used real-time quantitative polymerase chain reaction in small arteries and isolated tubes of endothelium to investigate how dysfunction enhances vasoreactivity. Rat nonmyogenic mesenteric resistance arteries developed vasomotion to micromolar phenylephrine (α1-adrenoceptor agonist); symmetrical vasoconstrictor oscillations mediated by L-type voltage-gated Ca2+ channels (VGCCs). Inhibiting NO synthesis abolished vasomotion so nanomolar phenylephrine now stimulated rapid, transient depolarizing spikes in the smooth muscle associated with chaotic vasomotion/vasospasm. Endothelium-dependent hyperpolarization block also enabled phenylephrine-vasospasm but without spikes or chaotic vasomotion. Depolarizing spikes were Ca2+-based and abolished by either T-type or L-type VGCCs blockers with depressed vasoconstriction. Removing NO also enabled transient spikes/vasoconstriction to Bay K-8644 (L-type VGCC activator). However, these were abolished by the L-type VGCC blocker nifedipine but not T-type VGCC block. Phenylephrine also initiated T-type VGCC-transient spikes and enhanced vasoconstriction after NO loss in nonmyogenic arteries from spontaneously hypertensive rats. In contrast to mesenteric arteries, myogenic coronary arteries displayed transient spikes and further vasoconstriction spontaneously on loss of NO. T-type VGCC block abolished these spikes and additional vasoconstriction but not myogenic tone. Therefore, in myogenic and nonmyogenic small arteries, reduced NO bioavailability engages T-type VGCCs, triggering transient depolarizing spikes in normally quiescent vascular smooth muscle to cause vasospasm. T-type block may offer a means to suppress vasospasm without inhibiting myogenic tone mediated by L-type VGCCs
