83 research outputs found
Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering
Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix
Universality of Thermodynamic Constants Governing Biological Growth Rates
Background: Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting ‘master reaction ’ using terms describing the temperature-dependent denaturation of the reaction’s enzyme. We consider whether such a model can describe growth in each domain of life. Methodology/Principal Findings: A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. Conclusions/Significance: The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models
Checkpoint Signaling, Base Excision Repair, and PARP Promote Survival of Colon Cancer Cells Treated with 5-Fluorodeoxyuridine but Not 5-Fluorouracil
The fluoropyrimidines 5-fluorouracil (5-FU) and FdUrd (5-fluorodeoxyuridine; floxuridine) are the backbone of chemotherapy regimens for colon cancer and other tumors. Despite their widespread use, it remains unclear how these agents kill tumor cells. Here, we have analyzed the checkpoint and DNA repair pathways that affect colon tumor responses to 5-FU and FdUrd. These studies demonstrate that both FdUrd and 5-FU activate the ATR and ATM checkpoint signaling pathways, indicating that they cause genotoxic damage. Notably, however, depletion of ATM or ATR does not sensitize colon cancer cells to 5-FU, whereas these checkpoint pathways promote the survival of cells treated with FdUrd, suggesting that FdUrd exerts cytotoxicity by disrupting DNA replication and/or inducing DNA damage, whereas 5-FU does not. We also found that disabling the base excision (BER) repair pathway by depleting XRCC1 or APE1 sensitized colon cancer cells to FdUrd but not 5-FU. Consistent with a role for the BER pathway, we show that small molecule poly(ADP-ribose) polymerase 1/2 (PARP) inhibitors, AZD2281 and ABT-888, remarkably sensitized both mismatch repair (MMR)-proficient and -deficient colon cancer cell lines to FdUrd but not to 5-FU. Taken together, these studies demonstrate that the roles of genotoxin-induced checkpoint signaling and DNA repair differ significantly for these agents and also suggest a novel approach to colon cancer therapy in which FdUrd is combined with a small molecule PARP inhibitor
Viral, bacterial, and fungal infections of the oral mucosa:Types, incidence, predisposing factors, diagnostic algorithms, and management
The Use of Stable Sulfur, Oxygen and Hydrogen Isotope Ratios as Geochemical Tracers of Sulfates in the Podwiśniówka Acid Drainage Area (South-Central Poland)
Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development
Irf6 directs glandular lineage differentiation of epidermal progenitors and promotes limited sweat gland regeneration in a mouse burn model
- …
