16,228 research outputs found
The Stokes Phenomenon and Quantum Tunneling for de Sitter Radiation in Nonstationary Coordinates
We study quantum tunneling for the de Sitter radiation in the planar
coordinates and global coordinates, which are nonstationary coordinates and
describe the expanding geometry. Using the phase-integral approximation for the
Hamilton-Jacobi action in the complex plane of time, we obtain the
particle-production rate in both coordinates and derive the additional
sinusoidal factor depending on the dimensionality of spacetime and the quantum
number for spherical harmonics in the global coordinates. This approach
resolves the factor of two problem in the tunneling method.Comment: LaTex 10 pages, no figur
Characterization of Shewanella oneidensis MtrC: a cell-surface decaheme cytochrome involved in respiratory electron transport to extracellular electron acceptors
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately -500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate
Recommended from our members
High-Performance, Wearable Thermoelectric Generator Based on a Highly Aligned Carbon Nanotube Sheet
A high-performance, wearable thermoelectric generator (TEG) was fabricated with a highly aligned carbon nanotube (CNT) sheet. The aligned CNT sheet exhibits extraordinary electrical conductivity compared to disordered CNT sheets and also can be directly fabricated as a continuous TEG without metal electrode interconnects. This provides a significant reduction in contact resistance between TE legs and electrodes compared to traditional TEGs, resulting in higher power output. In addition, the continuity of the module without any disconnected parts provides high degrees of mechanical stability and durability. This robust and scalable approach to flexible TEG fabrication paves the way for CNT applications in lightweight, flexible, and wearable electronics
Pontin functions as an essential coactivator for Oct4-dependent lincRNA expression in mouse embryonic stem cells
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.111311Ysciescopu
The hot and cold interstellar matter of early type galaxies and their radio emission
Over the last few years, the knowledge of the interstellar matter (ISM) of early type galaxies has increased dramatically. Many early type galaxies are now known to have ISM in three different phases: cold (neutral hydrogen (HI), dust and molecular material), warm (ionized) and hot (S-ray emitting) gas. Early type galaxies have smaller masses of cold ISM (10 to the 7th power - 10 to the 8th power solar mass; Jura et al. 1987) than later type spiral galaxies, while they have far more hot gas (10 to the 9th power - 10 to the tenth power solar mass; Forman et al. 1985, Canizares et al. 1987). In order to understand the relationship between the different phases of the ISM and the role of the ISM in fueling radio continuum sources and star formation, researchers compared observational data from a wide range of wavelengths
The sign problem across the QCD phase transition
The average phase factor of the QCD fermion determinant signals the strength
of the QCD sign problem. We compute the average phase factor as a function of
temperature and baryon chemical potential using a two-flavor NJL model. This
allows us to study the strength of the sign problem at and above the chiral
transition. It is discussed how the anomaly affects the sign problem.
Finally, we study the interplay between the sign problem and the endpoint of
the chiral transition.Comment: 9 pages and 9 fig
The Mechanical Behavior of a 25Cr Super Duplex Stainless Steel at Elevated Temperature
Peer reviewedPostprin
Enhanced Supersymmetry of Nonrelativistic ABJM Theory
We study the supersymmetry enhancement of nonrelativistic limits of the ABJM
theory for Chern-Simons level . The special attention is paid to the
nonrelativistic limit (known as `PAAP' case) containing both particles and
antiparticles. Using supersymmetry transformations generated by the monopole
operators, we find additional 2 kinematical, 2 dynamical, and 2 conformal
supercharges for this case. Combining with the original 8 kinematical
supercharges, the total number of supercharges becomes maximal: 14
supercharges, like in the well-known PPPP limit. We obtain the corresponding
super Schr\"odinger algebra which appears to be isomorphic to the one of the
PPPP case. We also discuss the role of monopole operators in supersymmetry
enhancement and partial breaking of supersymmetry in nonrelativistic limit of
the ABJM theory.Comment: 22 pages, references added, version to appear in JHE
Nuclear matter to strange matter transition in holographic QCD
We construct a simple holographic QCD model to study nuclear matter to
strange matter transition. The interaction of dense medium and hadrons is taken
care of by imposing the force balancing condition for stable D4/D6/D6
configuration. By considering the intermediate and light flavor branes
interacting with baryon vertex homogeneously distributed along R^3 space and
requesting the energy minimization, we find that there is a well defined
transition density as a function of current quark mass. We also find that as
density goes up very high, intermediate (or heavy) and light quarks populate
equally as expected from the Pauli principle. In this sense, the effect of the
Pauli principle is realized as dynamics of D-branes.Comment: 13 pages, 14 figure
Vertical Field Effect Transistor based on Graphene-WS2 Heterostructures for flexible and transparent electronics
The celebrated electronic properties of graphene have opened way for
materials just one-atom-thick to be used in the post-silicon electronic era. An
important milestone was the creation of heterostructures based on graphene and
other two-dimensional (2D) crystals, which can be assembled in 3D stacks with
atomic layer precision. These layered structures have already led to a range of
fascinating physical phenomena, and also have been used in demonstrating a
prototype field effect tunnelling transistor - a candidate for post-CMOS
technology. The range of possible materials which could be incorporated into
such stacks is very large. Indeed, there are many other materials where layers
are linked by weak van der Waals forces, which can be exfoliated and combined
together to create novel highly-tailored heterostructures. Here we describe a
new generation of field effect vertical tunnelling transistors where 2D
tungsten disulphide serves as an atomically thin barrier between two layers of
either mechanically exfoliated or CVD-grown graphene. Our devices have
unprecedented current modulation exceeding one million at room temperature and
can also operate on transparent and flexible substrates
- …
