5,814 research outputs found
Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires
We investigate the relaxation dynamics of photogenerated carriers in silicon
nanowires consisting of a crystalline core and a surrounding amorphous shell,
using femtosecond time-resolved differential reflectivity and transmission
spectroscopy at photon energies of 3.15 eV and 1.57 eV. The complex behavior of
the differential transmission and reflectivity transients is the mixed
contributions from the crystalline core and the amorphous silicon on the
nanowire surface and the substrate where competing effects of state filling and
photoinduced absorption govern the carrier dynamics. Faster relaxation rates
are observed on increasing the photo-generated carrier density. Independent
experimental results on crystalline silicon-on-sapphire help us in separating
the contributions from the carrier dynamics in crystalline core and the
amorphous regions in the nanowire samples. Further, single beam z-scan
nonlinear transmission experiments at 1.57 eV in both open and close aperture
configurations yield two-photon absorption coefficient \ (~3 cm/GW) and
nonlinear refraction coefficient \ (-2.5x10^-4 cm2/GW).Comment: 6 pages, 6 figure
Extension of Yeast Chronological Lifespan by Methylamine
Background: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth.
Methodology/Principal Findings: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase.
Conclusion/Significance: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.
Universal time-dependent deformations of Schrodinger geometry
We investigate universal time-dependent exact deformations of Schrodinger
geometry. We present 1) scale invariant but non-conformal deformation, 2)
non-conformal but scale invariant deformation, and 3) both scale and conformal
invariant deformation. All these solutions are universal in the sense that we
could embed them in any supergravity constructions of the Schrodinger invariant
geometry. We give a field theory interpretation of our time-dependent
solutions. In particular, we argue that any time-dependent chemical potential
can be treated exactly in our gravity dual approach.Comment: 24 pages, v2: references adde
Species replacement dominates megabenthos beta diversity in a remote seamount setting
Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity
Will the Big Five Personality Factor Stand-up: An Analysis of NEO Personality Inventory-Revised
The aim of the present study was to examine the factorial invariance of a major instrument i.e., NEO-Personality Inventory-Revised-Form S (NEO PI-R)1, tapping broad five factor of personality such as: neuroticism, extraversion, openness to experiences, agreeableness, and conscientiousness. It also aimed to study the replication of broad five factors in Indian population. To achieve these objectives, the NEO PI-R was administered on a sample of 375 subjects (age range from 18 yrs to 22 yrs) randomly selected from various academic institutes in Indian. The statistical analysis such as descriptive statistics, reliability analysis, and factor analysis were performed on collected data. The higher mean score on neuroticism in present data indicates a cultural variation across the country. Reliability analysis was confirmed test-retest reliability ranging from 0.70 to 0.78 (n = 108, gap of over 60 days) and strikingly high internal consistency ranging from 0.98 to 0.99 for the big five factor in India. Bivariate correlation analyses demonstrate positive significant correlations among the facets scale of NEO-PI-R and their corresponding factor except few correlations. The significant correlations among the five factors question their independence in the measurement of personality structure. In factor analysis, the three personality dimension such as conscientiousness, neuroticism, and agreeableness were clearly replicates and the other two factors such as extraversion and openness to experience were partially replicate to define the personality structure in Indian population. These findings are in line with existing literature and have strong implications to define the personality structure in Indian populatio
Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal
Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery
Combined In Silico, In Vivo, and In Vitro Studies Shed Insights into the Acute Inflammatory Response in Middle-Aged Mice
We combined in silico, in vivo, and in vitro studies to gain insights into age-dependent changes in acute inflammation in response to bacterial endotoxin (LPS). Time-course cytokine, chemokine, and NO2-/NO3- data from "middle-aged" (6-8 months old) C57BL/6 mice were used to re-parameterize a mechanistic mathematical model of acute inflammation originally calibrated for "young" (2-3 months old) mice. These studies suggested that macrophages from middle-aged mice are more susceptible to cell death, as well as producing higher levels of pro-inflammatory cytokines, vs. macrophages from young mice. In support of the in silico-derived hypotheses, resident peritoneal cells from endotoxemic middle-aged mice exhibited reduced viability and produced elevated levels of TNF-α, IL-6, IL-10, and KC/CXCL1 as compared to cells from young mice. Our studies demonstrate the utility of a combined in silico, in vivo, and in vitro approach to the study of acute inflammation in shock states, and suggest hypotheses with regard to the changes in the cytokine milieu that accompany aging. © 2013 Namas et al
A two-centred pragmatic randomised controlled trial of two interventions of postnatal support
Objectives: To establish whether providing additional postnatal support during the early postnatal months influences women's physical and psychological health and to identify health service benefits.
Design: Pragmatic randomised controlled trial with a 2 × 2 factorial design with two interventions.
Setting: Community centres, Ayrshire and Grampian, Scotland.
Population: One thousand and four primiparous women, 83% completed the baseline questionnaire, 71% at six months.
Methods: (1) An invitation to a local postnatal support group run weekly with a facilitator, starting two weeks postpartum. (2) A postnatal support manual, posted two weeks postpartum.
Main outcome measures: Data regarding primary outcome postnatal depression (Edinburgh Postnatal Depression Scale, EPDS), secondary outcomes, general health measures (SF-36), social support (SSQ6), use of health services and women's views of interventions were collected at two weeks postpartum and at three and six months.
Results: There were no significant differences in EPDS scores between the control and trial arms at three and six months, nor were there differences in the SF-36 and the SSQ6 scores. The 95% CI for the difference in EPDS effectively excluded a change in mean score of more than 10% with either intervention. There were no differences in health service attendances in primary or secondary care between the control and trial arms. Of those women who attended the groups, 40% attended six or more. Women reported favourably on the ‘pack’ with the majority reading it a few times and feeling that it was aimed at them.
Conclusions: Wide-scale provision by the National Health Service of either support groups or self-help manuals is not appropriate if the aim is to improve measurable health outcomes
Multicomponent fractional quantum Hall effect in graphene
We report observation of the fractional quantum Hall effect (FQHE) in high
mobility multi-terminal graphene devices, fabricated on a single crystal boron
nitride substrate. We observe an unexpected hierarchy in the emergent FQHE
states that may be explained by strongly interacting composite Fermions with
full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured
from temperature dependent transport to be up 10 times larger than in any other
semiconductor system. The remarkable strength and unusual hierarcy of the FQHE
described here provides a unique opportunity to probe correlated behavior in
the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
- …
