47 research outputs found
Relationship between Antibody Susceptibility and Lipopolysaccharide O-Antigen Characteristics of Invasive and Gastrointestinal Nontyphoidal Salmonellae Isolates from Kenya
Background: Nontyphoidal Salmonellae (NTS) cause a large burden of invasive and gastrointestinal disease among young children in sub-Saharan Africa. No vaccine is currently available. Previous reports indicate the importance of the O-antigen of Salmonella lipopolysaccharide for virulence and resistance to antibody-mediated killing. We hypothesised that isolates with more O-antigen have increased resistance to antibody-mediated killing and are more likely to be invasive than gastrointestinal.
Methodology/Principal findings: We studied 192 NTS isolates (114 Typhimurium, 78 Enteritidis) from blood and stools, mostly from paediatric admissions in Kenya 2000-2011. Isolates were tested for susceptibility to antibody-mediated killing, using whole adult serum. O-antigen structural characteristics, including O-acetylation and glucosylation, were investigated. Overall, isolates were susceptible to antibody-mediated killing, but S. Enteritidis were less susceptible and expressed more O-antigen than Typhimurium (p\u3c0.0001 for both comparisons). For S. Typhimurium, but not Enteritidis, O-antigen expression correlated with reduced sensitivity to killing (r = 0.29, 95% CI = 0.10-0.45, p = 0.002). Both serovars expressed O-antigen populations ranging 21-33 kDa average molecular weight. O-antigen from most Typhimurium were O-acetylated on rhamnose and abequose residues, while Enteritidis O-antigen had low or no O-acetylation. Both Typhimurium and Enteritidis O-antigen were approximately 20%-50% glucosylated. Amount of S. Typhimurium O-antigen and O-antigen glucosylation level were inversely related. There was no clear association between clinical presentation and antibody susceptibility, O-antigen level or other O-antigen features.
Conclusion/Significance: Kenyan S. Typhimurium and Enteritidis clinical isolates are susceptible to antibody-mediated killing, with degree of susceptibility varying with level of O-antigen for S. Typhimurium. This supports the development of an antibody-inducing vaccine against NTS for Africa. No clear differences were found in the phenotype of isolates from blood and stool, suggesting that the same isolates can cause invasive disease and gastroenteritis. Genome studies are required to understand whether invasive and gastrointestinal isolates differ at the genotypic level
Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan
Genomic Approaches to Enhance Stress Tolerance for Productivity Improvements in Pearl Millet
Pearl millet [Pennisetum glaucum (L.) R. Br.], the sixth most important cereal crop (after rice, wheat, maize, barley, and sorghum), is grown as a grain and stover crop by the small holder farmers in the harshest cropping environments of the arid and semiarid tropical regions of sub-Saharan Africa and South Asia. Millet is grown on ~31 million hectares globally with India in South Asia; Nigeria, Niger, Burkina Faso, and Mali in western and central Africa; and Sudan, Uganda, and Tanzania in Eastern Africa as the major producers. Pearl millet provides food and nutritional security to more than 500 million of the world’s poorest and most nutritionally insecure people. Global pearl millet production has increased over the past 15 years, primarily due to availability of improved genetics and adoption of hybrids in India and expanding area under pearl millet production in West Africa. Pearl millet production is challenged by various biotic and abiotic stresses resulting in a significant reduction in yields. The genomics research in pearl millet lagged behind because of multiple reasons in the past. However, in the recent past, several efforts were initiated in genomic research resulting into a generation of large amounts of genomic resources and information including recently published sequence of the reference genome and re-sequencing of almost 1000 lines representing the global diversity. This chapter reviews the advances made in generating the genetic and genomics resources in pearl millet and their interventions in improving the stress tolerance to improve the productivity of this very important climate-smart nutri-cereal
A research agenda for malaria eradication: basic science and enabling technologies.
Today's malaria control efforts are limited by our incomplete understanding of the biology of Plasmodium and of the complex relationships between human populations and the multiple species of mosquito and parasite. Research priorities include the development of in vitro culture systems for the complete life cycle of P. falciparum and P. vivax and the development of an appropriate liver culture system to study hepatic stages. In addition, genetic technologies for the manipulation of Plasmodium need to be improved, the entire parasite metabolome needs to be characterized to identify new druggable targets, and improved information systems for monitoring the changes in epidemiology, pathology, and host-parasite-vector interactions as a result of intensified control need to be established to bridge the gap between bench, preclinical, clinical, and population-based sciences
Density profile of 3He in a nanoscale 3He-4He superfluid film determined by neutron scattering
The crystal structure of d(GGATGGGAG) forms an essential part of the binding site for transcription factor IIIA
Most genes in higher organisms are activated by the binding of proteins called transcription factors. One such protein, transcription factor IIIA (TFIIIA) from the frog, activates the gene for 5S RNA by binding to the region of the gene between nucleotides 45 and 97. This binding site has been defined by a variety of biochemical studies, including base-deletion experiments and DNase I footprinting. The protein also binds to the gene product: in immature frogs it is stored as a complex with 5S RNA. From the observation that TFIIIA can bind to either double-helical DNA or RNA, and from their own measurements, Rhodes and Klug have proposed that the DNA-binding site for TFIIIA has an RNA-like structure. Here we present the crystal structure analysis of a part of the DNA-binding site (nucleotides 81-89 of the gene) which forms a particularly strong interaction with the protein, and show that it has a conformation similar to the A' form of double-helical RNA
