42 research outputs found
Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis.
Acute Tubular Necrosis (ATN) causes severe damage to the kidney epithelial tubular cells and is often associated with severe renal dysfunction. Stem-cell based therapies may provide alternative approaches to treating of ATN. We have previously shown that clonal c-kit(pos) stem cells, derived from human amniotic fluid (hAFSC) can be induced to a renal fate in an ex-vivo system. Herein, we show for the first time the successful therapeutic application of hAFSC in a mouse model with glycerol-induced rhabdomyolysis and ATN. When injected into the damaged kidney, luciferase-labeled hAFSC can be tracked using bioluminescence. Moreover, we show that hAFSC provide a protective effect, ameliorating ATN in the acute injury phase as reflected by decreased creatinine and BUN blood levels and by a decrease in the number of damaged tubules and apoptosis therein, as well as by promoting proliferation of tubular epithelial cells. We show significant immunomodulatory effects of hAFSC, over the course of ATN. We therefore speculate that AFSC could represent a novel source of stem cells that may function to modulate the kidney immune milieu in renal failure caused by ATN
Expansion in CD39(+) CD4(+) Immunoregulatory T Cells and Rarity of Th17 Cells in HTLV-1 Infected Patients Is Associated with Neurological Complications
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develops HAM/TSP. CD4(+) T cells are the main target of infection and play a pivotal role in regulating immunity to HTLV and are hypothesized to participate in the pathogenesis of HAM/TSP. the CD39 ectonucleotidase receptor is expressed on CD4(+) T cells and based on co-expression with CD25, marks T cells with distinct regulatory (CD39(+)CD25(+)) and effector (CD39(+)CD25(-)) function. Here, we investigated the expression of CD39 on CD4(+) T cells from a cohort of HAM/TSP patients, HTLV-1 asymptomatic carriers (AC), and matched uninfected controls. the frequency of CD39(+)CD4(+) T cells was increased in HTLV-1 infected patients, regardless of clinical status. More importantly, the proportion of the immunostimulatory CD39(+)CD25(-) CD4+ T-cell subset was significantly elevated in HAM/TSP patients as compared to AC and phenotypically had lower levels of the immunoinhibitory receptor, PD-1. We saw no difference in the frequency of CD39(+)CD25(+) regulatory (Treg) cells between AC and HAM/TSP patients. However, these cells transition from being anergic to displaying a polyfunctional cytokine response following HTLV-1 infection. CD39(-)CD25(+) T cell subsets predominantly secreted the inflammatory cytokine IL-17. We found that HAM/TSP patients had significantly fewer numbers of IL-17 secreting CD4(+) T cells compared to uninfected controls. Taken together, we show that the expression of CD39 is upregulated on CD4(+) T cells HAM/TSP patients. This upregulation may play a role in the development of the proinflammatory milieu through pathways both distinct and separate among the different CD39 T cell subsets. CD39 upregulation may therefore serve as a surrogate diagnostic marker of progression and could potentially be a target for interventions to reduce the development of HAM/TSP.National Institute of Allergies and Infectious DiseasesNational Institutes of HealthUniversity of CaliforniaSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS ResearchFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)John E. Fogarty International CenterNational Center for Research ResourcesNational Institute of General Medical Sciences from the National Institutes of HealthUniv Calif San Francisco, Dept Med, Div Expt Med, San Francisco, CA 94143 USAUniv Hawaii, John A Burns Sch Med, Dept Trop Med, Hawaii Ctr AIDS, Honolulu, HI 96822 USAUniv São Paulo, Sch Med, Deparment Infect Dis, São Paulo, BrazilUniv São Paulo, Sch Med, Div Clin Immunol & Allergy, São Paulo, BrazilFuncacao Prosangue, Hemoctr São Paulo, Mol Biol Lab, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Translat Med, São Paulo, BrazilSan Francisco-Gladstone Institute of Virology & Immunology Center for AIDS Research: P30 AI027763FAPESP: 04/15856-9/KallasFAPESP: 2010/05845-0/KallasFAPESP: 11/12297-2/SanabaniJohn E. Fogarty International Center: D43 TW00003National Center for Research Resources: 5P20RR016467-11National Institute of General Medical Sciences from the National Institutes of Health: 8P20GM103466-11Web of Scienc
NTPDases in the neuroendocrine hypothalamus: Possible energy regulators of the positive gonadotrophin feedback
<p>Abstract</p> <p>Background</p> <p>Brain-derived ectonucleoside triphosphate diphosphohydrolases (NTPDases) have been known as plasma membrane-incorporated enzymes with their ATP-hydrolyzing domain outside of the cell. As such, these enzymes are thought to regulate purinergic intercellular signaling by hydrolyzing ATP to ADP-AMP, thus regulating the availability of specific ligands for various P2X and P2Y purinergic receptors. The role of NTPDases in the central nervous system is little understood. The two major reasons are the insufficient knowledge of the precise localization of these enzymes in neural structures, and the lack of specific inhibitors for the various NTPDases. To fill these gaps, we recently studied the presence of neuron-specific NTPDase3 in the mitochondria of hypothalamic excitatory neurons by morphological and functional methods. Results from those studies suggested that intramitochondrial regulation of ATP levels may play a permissive role in the neural regulation of physiological functions by tuning the level of ATP-carried energy that is needed for neuronal functions, such as neurotransmission and/or intracellular signaling.</p> <p>Presentation of the hypothesis</p> <p>In the lack of highly specific inhibitors, the determination of the precise function and role of NTPDases is hardly feasable. Yet, here we attempt to find an approach to investigate a possible role for hypothalamic NTPDase3 in the initiation of the midcycle luteinizing hormone (LH) surge, as such a biological role was implied by our recent findings. Here we hypothesize that NTPDase-activity in neurons of the AN may play a permissive role in the regulation of the estrogen-induced pituitary LH-surge.</p> <p>Testing the hypothesis</p> <p>We propose to test our hypothesis on ovariectomized rats, by stereotaxically injecting 17beta-estradiol and/or an NTPDase-inhibitor into the arcuate nucleus and determine the consequential levels of blood LH, mitochondrial respiration rates from arcuate nucleus synaptosomal preparations, NTPDase3-expression from arcuate nucleus tissue samples, all compared to sham and intact controls.</p> <p>Implications of the hypothesis</p> <p>Results from these studies may lead to the conclusion that estrogen may modulate the activity of mitochondrial, synapse-linked NTPDase3, and may show a correlation between mitochondrial NTPDase3-activity and the regulation of LH-release by estrogen.</p
CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why?
Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains
Cloning and characterization of the ecto-nucleotidase NTPDase3 from rat brain: Predicted secondary structure and relation to other members of the E-NTPDase family and actin
The protein family of ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDase family) contains multiple members that hydrolyze nucleoside 5’-triphosphates and nucleoside 5’-diphosphates with varying preference for the individual type of nucleotide. We report the cloning and functional expression of rat NTPDase3. The rat brain-derived cDNA has an open reading frame of 1590 bp encoding 529 amino acid residues, a calculated molecular mass of 59.1 kDa and predicted N- and C-terminal hydrophobic sequences. It shares 94.3% and 81.7% amino acid identity with the mouse and human NTPDase3, respectively, and is more closely related to cell surface-located than to the intracellularly located members of the enzyme family. The NTPDase3 gene is allocated to chromosome 8q32 and organized into 11 exons. Rat NTPDase3 expressed in CHO cells hydrolyzed both nucleoside triphosphates and nucleoside diphosphates with hydrolysis ratios of ATP:ADP of 5:1 and UTP:UDP of 8:1. After addition of ATP, ADP is formed as an intermediate product that is further hydrolyzed to AMP. The enzyme is preferentially activated by Ca2+ over Mg2+ and reveals an alkaline pH optimum. Immunocytochemistry confirmed expression of heterologously expressed NTPDase3 to the surface of CHO cells. PC12 cells express endogenous surface-located NTPDase3. An immunoblot analysis detects NTPDase3 in all rat brain regions investigated. An alignment of the secondary structure domains of actin conserved within the actin/HSP70/sugar kinase superfamily to those of all members of the NTPDase family reveals apparent similarity. It infers that NTPDases share the two-domain structure with members of this enzyme superfamily
CD39 and control of cellular immune responses
CD39 is the cell surface-located prototypic member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. Biological actions of CD39 are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides. This ecto-enzymatic cascade in tandem with CD73 (ecto-5–nucleotidase) also generates adenosine and has major effects on both P2 and adenosine receptor signalling. Despite the early recognition of CD39 as a B lymphocyte activation marker, little is known of the role of CD39 in humoral or cellular immune responses. There is preliminary evidence to suggest that CD39 may impact upon antibody affinity maturation. Pericellular nucleotide/nucleoside fluxes caused by dendritic cell expressed CD39 are also involved in the recruitment, activation and polarization of naïve T cells. We have recently explored the patterns of CD39 expression and the functional role of this ecto-nucleotidase within quiescent and activated T cell subsets. Our data indicate that CD39, together with CD73, efficiently distinguishes T regulatory cells (Treg) from other resting or activated T cells in mice (and humans). Furthermore, CD39 serves as an integral component of the suppressive machinery of Treg, acting, at least in part, through the modulation of pericellular levels of adenosine. We have also shown that the coordinated regulation of CD39/CD73 expression and of the adenosine receptor A2A activates an immunoinhibitory loop that differentially regulates Th1 and Th2 responses. The in vivo relevance of this network is manifest in the phenotype of Cd39-null mice that spontaneously develop features of autoimmune diseases associated with Th1 immune deviation. These data indicate the potential of CD39 and modulated purinergic signalling in the co-ordination of immunoregulatory functions of dendritic and Treg cells. Our findings also suggest novel therapeutic strategies for immune-mediated diseases
Lipopolysaccharide challenge significantly influences lipid metabolism and proteome of white adipose tissue in growing pigs
The E-NTPDase family of ectonucleotidases: Structure function relationships and pathophysiological significance
Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides to the respective nucleosides. Within the past decade, ectonucleotidases belonging to several enzyme families have been discovered, cloned and characterized. In this article, we specifically address the cell surface-located members of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase/CD39) family (NTPDase1,2,3, and 8). The molecular identification of individual NTPDase subtypes, genetic engineering, mutational analyses, and the generation of subtype-specific antibodies have resulted in considerable insights into enzyme structure and function. These advances also allow definition of physiological and patho-physiological implications of NTPDases in a considerable variety of tissues. Biological actions of NTPDases are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides and consequent effects on P2-receptor signaling. It further appears that the spatial and temporal expression of NTPDases by various cell types within the vasculature, the nervous tissues and other tissues impacts on several patho-physiological processes. Examples include acute effects on cellular metabolism, adhesion, activation and migration with other protracted impacts upon developmental responses, inclusive of cellular proliferation, differentiation and apoptosis, as seen with atherosclerosis, degenerative neurological diseases and immune rejection of transplanted organs and cells. Future clinical applications are expected to involve the development of new therapeutic strategies for transplantation and various inflammatory cardiovascular, gastrointestinal and neurological diseases
Lipopolysaccharide Treatment Modifies pH- and Cation-dependent Ecto-ATPase Activity of Endothelial Cells
Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant.
Injections of soluble proteins are poorly immunogenic, and often elicit antigen-specific tolerance. The mechanism of this phenomenon has been an enduring puzzle, but it has been speculated that tolerance induction may be due to antigen presentation by poorly stimulatory, resting B cells, which lack specific immunoglobulin receptors for the protein. In contrast, adjuvants, or infectious agents, which cause the release of proinflammatory cytokines such as tumor necrosis factor alpha and interleukin 1beta in vivo are believed to recruit and activate professional antigen-presenting cells to the site(s) of infection, thereby eliciting immunity. Here we show that administration of Flt3 ligand (FL), a cytokine capable of inducing large numbers of dendritic cells (DCs) in vivo, (a) dramatically enhances the sensitivity of antigen-specific B and T cell responses to systemic injection of a soluble protein, through a CD40-CD40 ligand-dependent mechanism; (b) influences the class of antibody produced; and (c) enables productive immune responses to otherwise tolerogenic protocols. These data support the hypothesis that the delicate balance between immunity and tolerance in vivo is pivotally controlled by DCs, and underscore the potential of FL as a vaccine adjuvant for immunotherapy in infectious disease and other clinical settings
