10,267 research outputs found
Deciding what is possible and impossible following hippocampal damage in humans
There is currently much debate about whether the precise role of the hippocampus in scene processing is predominantly constructive, perceptual or mnemonic. Here, we developed a novel experimental paradigm designed to control for general perceptual and mnemonic demands, thus enabling us to specifically vary the requirement for constructive processing. We tested the ability of patients with selective bilateral hippocampal damage and matched control participants to detect either semantic (e.g., an elephant with butterflies for ears) or constructive (e.g., an endless staircase) violations in realistic images of scenes. Thus, scenes could be semantically or constructively 'possible' or 'impossible'. Importantly, general perceptual and memory requirements were similar for both types of scene. We found that the patients performed comparably to control participants when deciding whether scenes were semantically possible or impossible, but were selectively impaired at judging if scenes were constructively possible or impossible. Post-task debriefing indicated that control participants constructed flexible mental representations of the scenes in order to make constructive judgements, whereas the patients were more constrained and typically focused on specific fragments of the scenes, with little indication of having constructed internal scene models. These results suggest that one contribution the hippocampus makes to scene processing is to construct internal representations of spatially coherent scenes, which may be vital for modelling the world during both perception and memory recall. This article is protected by copyright. All rights reserved
Hippocampal Damage Increases Deontological Responses during Moral Decision Making
Complex moral decision making is associated with the ventromedial prefrontal cortex (vmPFC) in humans, and damage to this region significantly increases the frequency of utilitarian judgments. Since the vmPFC has strong anatomical and functional links with the hippocampus, here we asked how patients with selective bilateral hippocampal damage would derive moral decisions on a classic moral dilemmas paradigm. We found that the patients approved of the utilitarian options significantly less often than control participants, favoring instead deontological responses-rejecting actions that harm even one person. Thus, patients with hippocampal damage have a strikingly opposite approach to moral decision making than vmPFC-lesioned patients. Skin-conductance data collected during the task showed increased emotional arousal in the hippocampal-damaged patients and they stated that their moral decisions were based on emotional instinct. By contrast, control participants made moral decisions based on the integration of an adverse emotional response to harming others, visualization of the consequences of one's action, and the rational re-evaluation of future benefits. This integration may be disturbed in patients with either hippocampal or vmPFC damage. Hippocampal lesions decreased the ability to visualize a scenario and its future consequences, which seemed to render the adverse emotional response overwhelmingly dominant. In patients with vmPFC damage, visualization might also be reduced alongside an inability to detect the adverse emotional response, leaving only the utilitarian option open. Overall, these results provide insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions. SIGNIFICANCE STATEMENT: The ventromedial prefrontal cortex (vmPFC) is closely associated with the ability to make complex moral judgements. When this area is damaged, patients become more utilitarian (the ends justify the means) and have decreased emotional arousal during moral decision making. The vmPFC is closely connected with another brain region-the hippocampus. In this study we found that patients with selective bilateral hippocampal damage show a strikingly opposite response pattern to those with vmPFC damage when making moral judgements. They rejected harmful actions of any kind (thus their responses were deontological) and showed increased emotional arousal. These results provide new insights into the processes involved in moral decision making and highlight the complementary roles played by two closely connected brain regions
Effects of study design and allocation on participant behaviour-ESDA: study protocol for a randomized controlled trial
Background: What study participants think about the nature of a study has been hypothesised to affect subsequent behaviour and to potentially bias study findings. In this trial we examine the impact of awareness of study design and allocation on participant drinking behaviour.
Methods/Design: A three-arm parallel group randomised controlled trial design will be used. All recruitment, screening, randomisation, and follow-up will be conducted on-line among university students. Participants who indicate a hazardous level of alcohol consumption will be randomly assigned to one of three groups. Group A will be informed their drinking will be assessed at baseline and again in one month (as in a cohort study design). Group B will be told the study is an intervention trial and they are in the control group. Group C will be told the study is an intervention trial and they are in the intervention group. All will receive exactly the same brief educational material to read. After one month, alcohol intake for the past 4 weeks will be assessed.
Discussion: The experimental manipulations address subtle and previously unexplored ways in which participant behaviour may be unwittingly influenced by standard practice in trials. Given the necessity of relying on self-reported outcome, it will not be possible to distinguish true behaviour change from reporting artefact. This does not matter in the present study, as any effects of awareness of study design or allocation involve bias that is not well understood. There has been little research on awareness effects, and our outcomes will provide an indication of the possible value of further studies of this type and inform hypothesis generation
Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA
The potential link between badgers and bovine tuberculosis has made it vital to develop
accurate techniques to census badgers. Here we investigate the potential of using genetic
profiles obtained from faecal DNA as a basis for population size estimation. After trialling
several methods we obtained a high amplification success rate (89%) by storing faeces in
70% ethanol and using the guanidine thiocyanate/silica method for extraction. Using 70%
ethanol as a storage agent had the advantage of it being an antiseptic. In order to obtain reliable
genotypes with fewer amplification reactions than the standard multiple-tubes
approach, we devised a comparative approach in which genetic profiles were compared
and replication directed at similar, but not identical, genotypes. This modified method
achieved a reduction in polymerase chain reactions comparable with the maximumlikelihood
model when just using reliability criteria, and was slightly better when using
reliability criteria with the additional proviso that alleles must be observed twice to be considered
reliable. Our comparative approach would be best suited for studies that include
multiple faeces from each individual. We utilized our approach in a well-studied population
of badgers from which individuals had been sampled and reliable genotypes obtained.
In a study of 53 faeces sampled from three social groups over 10 days, we found that direct
enumeration could not be used to estimate population size, but that the application of
mark–recapture models has the potential to provide more accurate results
Origin of symbol-using systems: speech, but not sign, without the semantic urge
Natural language—spoken and signed—is a multichannel phenomenon, involving facial and body expression, and voice and visual intonation that is often used in the service of a social urge to communicate meaning. Given that iconicity seems easier and less abstract than making arbitrary connections between sound and meaning, iconicity and gesture have often been invoked in the origin of language alongside the urge to convey meaning. To get a fresh perspective, we critically distinguish the origin of a system capable of evolution from the subsequent evolution that system becomes capable of. Human language arose on a substrate of a system already capable of Darwinian evolution; the genetically supported uniquely human ability to learn a language reflects a key contact point between Darwinian evolution and language. Though implemented in brains generated by DNA symbols coding for protein meaning, the second higher-level symbol-using system of language now operates in a world mostly decoupled from Darwinian evolutionary constraints. Examination of Darwinian evolution of vocal learning in other animals suggests that the initial fixation of a key prerequisite to language into the human genome may actually have required initially side-stepping not only iconicity, but the urge to mean itself. If sign languages came later, they would not have faced this constraint
Removing exogenous information using pedigree data
Management of certain populations requires the preservation of its pure genetic background. When, for different reasons, undesired alleles are introduced, the original genetic conformation must be recovered. The present study tested, through computer simulations, the power of recovery (the ability for removing the foreign information) from genealogical data. Simulated scenarios comprised different numbers of exogenous individuals taking partofthe founder population anddifferent numbers of unmanaged generations before the removal program started. Strategies were based on variables arising from classical pedigree analyses such as founders? contribution and partial coancestry. The ef?ciency of the different strategies was measured as the proportion of native genetic information remaining in the population. Consequences on the inbreeding and coancestry levels of the population were also evaluated. Minimisation of the exogenous founders? contributions was the most powerful method, removing the largest amount of genetic information in just one generation.However, as a side effect, it led to the highest values of inbreeding. Scenarios with a large amount of initial exogenous alleles (i.e. high percentage of non native founders), or many generations of mixing became very dif?cult to recover, pointing out the importance of being careful about introgression events in populatio
Electronic transport in polycrystalline graphene
Most materials in available macroscopic quantities are polycrystalline.
Graphene, a recently discovered two-dimensional form of carbon with strong
potential for replacing silicon in future electronics, is no exception. There
is growing evidence of the polycrystalline nature of graphene samples obtained
using various techniques. Grain boundaries, intrinsic topological defects of
polycrystalline materials, are expected to dramatically alter the electronic
transport in graphene. Here, we develop a theory of charge carrier transmission
through grain boundaries composed of a periodic array of dislocations in
graphene based on the momentum conservation principle. Depending on the grain
boundary structure we find two distinct transport behaviours - either high
transparency, or perfect reflection of charge carriers over remarkably large
energy ranges. First-principles quantum transport calculations are used to
verify and further investigate this striking behaviour. Our study sheds light
on the transport properties of large-area graphene samples. Furthermore,
purposeful engineering of periodic grain boundaries with tunable transport gaps
would allow for controlling charge currents without the need of introducing
bulk band gaps in otherwise semimetallic graphene. The proposed approach can be
regarded as a means towards building practical graphene electronics.Comment: accepted in Nature Material
Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene
The quantum-Hall-effect (QHE) occurs in topologically-ordered states of
two-dimensional (2d) electron-systems in which an insulating bulk-state
coexists with protected 1d conducting edge-states. Owing to a unique
topologically imposed edge-bulk correspondence these edge-states are endowed
with universal properties such as fractionally-charged quasiparticles and
interference-patterns, which make them indispensable components for QH-based
quantum-computation and other applications. The precise edge-bulk
correspondence, conjectured theoretically in the limit of sharp edges, is
difficult to realize in conventional semiconductor-based electron systems where
soft boundaries lead to edge-state reconstruction. Using scanning-tunneling
microscopy and spectroscopy to follow the spatial evolution of bulk
Landau-levels towards a zigzag edge of graphene supported above a graphite
substrate we demonstrate that in this system it is possible to realize
atomically sharp edges with no edge-state reconstruction. Our results single
out graphene as a system where the edge-state structure can be controlled and
the universal properties directly probed.Comment: 16 pages, 4 figure
A randomised controlled trial and cost-effectiveness evaluation of "booster" interventions to sustain increases in physical activity in middle-aged adults in deprived urban neighbourhoods
Background: Systematic reviews have identified a range of brief interventions which increase physical activity in previously sedentary people. There is an absence of evidence about whether follow up beyond three months can maintain long term physical activity. This study assesses whether it is worth providing motivational interviews, three months after giving initial advice, to those who have become more active.
Methods/Design: Study candidates (n = 1500) will initially be given an interactive DVD and receive two telephone follow ups at monthly intervals checking on receipt and use of the DVD. Only those that have increased their physical activity after three months (n = 600) will be randomised into the study. These participants will receive either a "mini booster" (n = 200), "full booster" (n = 200) or no booster (n = 200). The "mini booster" consists of two telephone calls one month apart to discuss physical activity and maintenance strategies. The "full booster" consists of a face-to-face meeting with the facilitator at the same intervals. The purpose of these booster sessions is to help the individual maintain their increase in physical activity. Differences in physical activity, quality of life and costs associated with the booster interventions, will be measured three and nine months from randomisation. The research will be conducted in 20 of the most deprived neighbourhoods in Sheffield, which have large, ethnically diverse populations, high levels of economic deprivation, low levels of physical activity, poorer health and shorter life expectancy. Participants will be recruited through general practices and community groups, as well as by postal invitation, to ensure the participation of minority ethnic groups and those with lower levels of literacy. Sheffield City Council and Primary Care Trust fund a range of facilities and activities to promote physical activity and variations in access to these between neighbourhoods will make it possible to examine whether the effectiveness of the intervention is modified by access to community facilities. A one-year integrated feasibility study will confirm that recruitment targets are achievable based on a 10% sample.Discussion: The choice of study population, study interventions, brief intervention preceding the study, and outcome measure are discussed
- …
