658 research outputs found
Hydrostatic pressure does not cause detectable changes to survival of human retinal ganglion
Purpose: Elevated intraocular pressure (IOP) is a major risk factor for glaucoma. One consequence of raised IOP is that ocular tissues are subjected to increased hydrostatic pressure (HP). The effect of raised HP on stress pathway signaling and retinal ganglion cell (RGC) survival in the human retina was investigated. Methods: A chamber was designed to expose cells to increased HP (constant and fluctuating). Accurate pressure control (10-100mmHg) was achieved using mass flow controllers. Human organotypic retinal cultures (HORCs) from donor eyes (<24h post mortem) were cultured in serum-free DMEM/HamF12. Increased HP was compared to simulated ischemia (oxygen glucose deprivation, OGD). Cell death and apoptosis were measured by LDH and TUNEL assays, RGC marker expression by qRT-PCR (THY-1) and RGC number by immunohistochemistry (NeuN). Activated p38 and JNK were detected by Western blot. Results: Exposure of HORCs to constant (60mmHg) or fluctuating (10-100mmHg; 1 cycle/min) pressure for 24 or 48h caused no loss of structural integrity, LDH release, decrease in RGC marker expression (THY-1) or loss of RGCs compared with controls. In addition, there was no increase in TUNEL-positive NeuN-labelled cells at either time-point indicating no increase in apoptosis of RGCs. OGD increased apoptosis, reduced RGC marker expression and RGC number and caused elevated LDH release at 24h. p38 and JNK phosphorylation remained unchanged in HORCs exposed to fluctuating pressure (10-100mmHg; 1 cycle/min) for 15, 30, 60 and 90min durations, whereas OGD (3h) increased activation of p38 and JNK, remaining elevated for 90min post-OGD. Conclusions: Directly applied HP had no detectable impact on RGC survival and stress-signalling in HORCs. Simulated ischemia, however, activated stress pathways and caused RGC death. These results show that direct HP does not cause degeneration of RGCs in the ex vivo human retina
Strategically Equivalent Contests
Using a two-player Tullock-type contest, we show that intuitively and structurally different contests can be strategically equivalent. Strategically equivalent contests generate the same best response functions and, as a result, the same equilibrium efforts. However, strategically equivalent contests may yield different equilibrium payoffs. We propose a simple two-step procedure to identify strategically equivalent contests. Using this procedure, we identify contests that are strategically equivalent to the original Tullock contest, and provide new examples of strategically equivalent contests. Finally, we discuss possible contest design applications and avenues for future theoretical and empirical research
Divergent platforms
Models of electoral competition between two opportunistic, office-motivated parties typically predict that both parties become indistinguishable in equilibrium. I show that this strong connection between the office motivation of parties and their equilibrium choice of identical platforms depends on two—possibly false—assumptions: (1) Issue spaces are uni-dimensional and (2) Parties are unitary actors whose preferences can be represented by expected utilities. I provide an example of a two-party model in which parties offer substantially different equilibrium platforms even though no exogenous differences between parties are assumed. In this example, some voters’ preferences over the 2-dimensional issue space exhibit non-convexities and parties evaluate their actions with respect to a set of beliefs on the electorate
Are groups more rational than individuals? A review of interactive decision making in groups
Many decisions are interactive; the outcome of one party depends not only on its decisions or on acts of nature but also on the decisions of others. In the present article, we review the literature on decision making made by groups of the past 25 years. Researchers have compared the strategic behavior of groups and individuals in many games: prisoner's dilemma, dictator, ultimatum, trust, centipede and principal-agent games, among others. Our review suggests that results are quite consistent in revealing that groups behave closer to the game-theoretical assumption of rationality and selfishness than individuals. We conclude by discussing future research avenues in this area
Life-Long Radar Tracking of Bumblebees
This work was supported by European Research Council Advanced Grant no. 339347
Discovery of the Onset of Rapid Accretion by a Dormant Massive Black Hole
Massive black holes are believed to reside at the centres of most galaxies.
They can be- come detectable by accretion of matter, either continuously from a
large gas reservoir or impulsively from the tidal disruption of a passing star,
and conversion of the gravitational energy of the infalling matter to light.
Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be
variable but have never been observed to turn on or off. Tidal disruption of
stars by dormant massive black holes has been inferred indirectly but the on-
set of a tidal disruption event has never been observed. Here we report the
first discovery of the onset of a relativistic accretion-powered jet in the new
extragalactic transient, Swift J164449.3+573451. The behaviour of this new
source differs from both theoretical models of tidal disruption events and
observations of the jet-dominated AGN known as blazars. These differences may
stem from transient effects associated with the onset of a powerful jet. Such
an event in the massive black hole at the centre of our Milky Way galaxy could
strongly ionize the upper atmosphere of the Earth, if beamed towards us.Comment: Submitted to Nature. 4 pages, 3 figures (main paper). 26 pages, 13
figures (supplementary information
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Changes in habitat associations during range expansion: disentangling the effects of climate and residence time
The distributions of many species are not at equilibrium with their environment. This includes spreading non-native species and species undergoing range shifts in response to climate change. The habitat associations of these species may change during range expansion as less favourable climatic conditions at expanding range margins may constrain species to use only the most favourable habitats, violating the species distribution model assumption of stationarity. Alternatively, changes in habitat associations could result from density-dependent habitat selection; at range margins, population densities are initially low so species can exhibit density-independent selection of the most favourable habitats, while in the range core, where population densities are higher, species spread into less favourable habitat. We investigate if the habitat preferences of the non-native common waxbill Estrilda astrild changed as they spread in three directions (north, east and south-east) in the Iberian Peninsula. There are different degrees of climatic suitability and colonization speed across range expansion axes, allowing us to separate the effects of climate from residence time. In contrast to previous studies we find a stronger effect of residence time than climate in influencing the prevalence of common waxbills. As well as a strong additive effect of residence time, there were some changes in habitat associations, which were consistent with density-dependent habitat selection. The combination of broader habitat associations and higher prevalence in areas that have been colonised for longer means that species distribution models constructed early in the invasion process are likely to underestimate species’ potential distribution
Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set
We report a measurement of the bottom-strange meson mixing phase \beta_s
using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays
in which the quark-flavor content of the bottom-strange meson is identified at
production. This measurement uses the full data set of proton-antiproton
collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment
at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity.
We report confidence regions in the two-dimensional space of \beta_s and the
B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2,
-1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in
agreement with the standard model expectation. Assuming the standard model
value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +-
0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +-
0.009 (syst) ps, which are consistent and competitive with determinations by
other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012
Identifying risk factors for exposure to culturable allergenic moulds in energy efficient homes by using highly specific monoclonal antibodies.
PublishedThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.The aim of this study was to determine the accuracy of monoclonal antibodies (mAbs) in identifying culturable allergenic fungi present in visible mould growth in energy efficient homes, and to identify risk factors for exposure to these known allergenic fungi. Swabs were taken from fungal contaminated surfaces and culturable yeasts and moulds isolated by using mycological culture. Soluble antigens from cultures were tested by ELISA using mAbs specific to the culturable allergenic fungi Aspergillus and Penicillium spp., Ulocladium, Alternaria, and Epicoccum spp., Cladosporium spp., Fusarium spp., and Trichoderma spp. Diagnostic accuracies of the ELISA tests were determined by sequencing of the internally transcribed spacer 1 (ITS1)-5.8S-ITS2-encoding regions of recovered fungi following ELISA. There was 100% concordance between the two methods, with ELISAs providing genus-level identity and ITS sequencing providing species-level identities (210 out of 210 tested). Species of Aspergillus/Penicillium, Cladosporium, Ulocladium/Alternaria/Epicoccum, Fusarium and Trichoderma were detected in 82% of the samples. The presence of condensation was associated with an increased risk of surfaces being contaminated by Aspergillus/Penicillium spp. and Cladosporium spp., whereas moisture within the building fabric (water ingress/rising damp) was only associated with increased risk of Aspergillus/Penicillium spp. Property type and energy efficiency levels were found to moderate the risk of indoor surfaces becoming contaminated with Aspergillus/Penicillium and Cladosporium which in turn was modified by the presence of condensation, water ingress and rising damp, consistent with previous literature.Richard Sharpe's PhD scholarship was funded by the European
Social Fund Convergence Program for Cornwall and the Isles of
Scilly, and was undertaken in collaboration with Coastline
Housing.
The European Centre for Environment and Human Health (part
of the University of Exeter Medical School) is part financed by the
European Regional Development Fund Program 2007–2013 and
European Social Fund Convergence Program for Cornwall and the
Isles of Scill
- …
