331 research outputs found

    Both habitat change and local lek structure influence patterns of spatial loss and recovery in a black grouse population

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10144-015-0484-3Land use change is a major driver of declines in wildlife populations. Where human economic or recreational interests and wildlife share landscapes this problem is exacerbated. Changes in UK black grouse Tetrao tetrix populations are thought to have been strongly influenced by upland land use change. In a long-studied population within Perthshire, lek persistence is positively correlated with lek size, and remaining leks clustered most strongly within the landscape when the population is lowest, suggesting that there may be a demographic and/or spatial context to the reaction of the population to habitat changes. Hierarchical cluster analysis of lek locations revealed that patterns of lek occupancy when the population was declining were different to those during the later recovery period. Response curves from lek-habitat models developed using MaxEnt for periods with a declining population, low population, and recovering population were consistent across years for most habitat measures. We found evidence linking lek persistence with habitat quality changes and more leks which appeared between 1994 and 2008 were in improving habitat than those which disappeared during the same period. Generalised additive models (GAMs) identified changes in woodland and starting lek size as being important indicators of lek survival between declining and low/recovery periods. There may also have been a role for local densities in explaining recovery since the population low point. Persistence of black grouse leks was influenced by habitat, but changes in this alone did not fully account for black grouse declines. Even when surrounded by good quality habitat, leks can be susceptible to extirpation due to isolation

    Artificial sweeteners inhibit multidrug‐resistant pathogen growth and potentiate antibiotic activity

    Get PDF
    Disclosure and competing interests statement: Brunel University London has two patents covering the therapeutic use of artificial sweeteners and their use to potentiate antibiotic activity.Data availability The RNA-seq datasets produced in this study (gene expression dataset series titled "Alteration of global transcription by the artifi- cial sweetener acesulfame-K in Acinetobacter baumannii AB5075") are available at the National Center for Biotechnology Information Gene Expression Omnibus public database under accession number GSE199706 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=GSE199706).Copyright © 2022 The Authors. Antimicrobial resistance is one of the most pressing concerns of our time. The human diet is rich with compounds that alter bacterial gut communities and virulence-associated behaviours, suggesting food additives may be a niche for the discovery of novel anti-virulence compounds. Here, we identify three artificial sweeteners, saccharin, cyclamate and acesulfame-K (ace-K), that have a major growth inhibitory effect on priority pathogens. We further characterise the impact of ace-K on multidrug-resistant Acinetobacter baumannii, demonstrating that it can disable virulence behaviours such as biofilm formation, motility and the ability to acquire exogenous antibiotic-resistant genes. Further analysis revealed the mechanism of growth inhibition is through bulge-mediated cell lysis and that cells can be rescued by cation supplementation. Antibiotic sensitivity assays demonstrated that at sub-lethal concentrations, ace-K can resensitise A. baumannii to last resort antibiotics, including carbapenems. Using a novel ex vivo porcine skin wound model, we show that ace-K antimicrobial activity is maintained in the wound microenvironment. Our findings demonstrate the influence of artificial sweeteners on pathogen behaviour and uncover their therapeutic potential.British Society for Antimicrobial Chemotherapy BSAC-2018-0095; NC3Rs PhD Studentship NC/V001582/1; Biotechnology and Biological Sciences Research Council New Investigator Award BB/V007823/1; Academy of Medical Sciences/the Wellcome Trust/the Government Department of Business, Energy and Industrial Strategy/the Bri- tish Heart Foundation/Diabetes UK Springboard Award [SBF006\1040; Research Grant BB/T007168/1 from the Biotechnology and Biological Sciences Research Council

    Furanone loaded aerogels are effective antibiofilm therapeutics in a model of chronic Pseudomonas aeruginosa wound infection

    Get PDF
    Almost 80% of chronic wounds have a bacterial biofilm present. These wound biofilms are caused by a range of organisms and are often polymicrobial. Pseudomonas aeruginosa is one of the most common causative organisms in wound infections and readily forms biofilms in wounds. To coordinate this, P. aeruginosa uses a process known as quorum sensing. Structural homologues of the quorum sensing signalling molecules have been used to disrupt this communication and prevent biofilm formation by Pseudomonas. However, these compounds have not yet reached clinical use. Here, we report the production and characterisation of a lyophilised PVA aerogel for use in delivering furanones to wound biofilms. PVA aerogels successfully release a model antimicrobial and two naturally occurring furanones in an aqueous environment. Furanone loaded aerogels inhibited biofilm formation in P. aeruginosa by up to 98.80%. Further, furanone loaded aerogels successfully reduced total biomass of preformed biofilms. Treatment with a sotolon loaded aerogel yielded a 5.16 log reduction in viable biofilm bound cells in a novel model of chronic wound biofilm, equivalent to the current wound therapy Aquacel AG. These results highlight the potential utility of aerogels in drug delivery to infected wounds and supports the use of biofilm inhibitory compounds as wound therapeutics.Biotechnology and Biological Sciences Research Council New Investigator Award BB/V007823/1. RRMC and CP are supported by the Academy of Medical Sciences/the Wellcome Trust/the Government Department of Business, Energy and Industrial Strategy/the British Heart Foundation/Diabetes UK Springboard Award [SBF006\1040]

    Designing high-quality implementation research: development, application, feasibility and preliminary evaluation of the implementation science research development (ImpRes) tool and guide

    Get PDF
    Background:  Designing implementation research can be a complex and daunting task, especially for applied health researchers who have not received specialist training in implementation science. We developed the Implementation Science Research Development (ImpRes) tool and supplementary guide to address this challenge and provide researchers with a systematic approach to designing implementation research. Methods:  A multi-method and multi-stage approach was employed. An international, multidisciplinary expert panel engaged in an iterative brainstorming and consensus-building process to generate core domains of the ImpRes tool, representing core implementation science principles and concepts that researchers should consider when designing implementation research. Simultaneously, an iterative process of reviewing the literature and expert input informed the development and content of the tool. Once consensus had been reached, specialist expert input was sought on involving and engaging patients/service users; and economic evaluation. ImpRes was then applied to 15 implementation and improvement science projects across the National Institute of Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) South London, a research organisation in London, UK. Researchers who applied the ImpRes tool completed an 11-item questionnaire evaluating its structure, content and usefulness. Results:  Consensus was reached on ten implementation science domains to be considered when designing implementation research. These include implementation theories, frameworks and models, determinants of implementation, implementation strategies, implementation outcomes and unintended consequences. Researchers who used the ImpRes tool found it useful for identifying project areas where implementation science is lacking (median 5/5, IQR 4–5) and for improving the quality of implementation research (median 4/5, IQR 4–5) and agreed that it contained the key components that should be considered when designing implementation research (median 4/5, IQR 4–4). Qualitative feedback from researchers who applied the ImpRes tool indicated that a supplementary guide was needed to facilitate use of the tool. Conclusions:  We have developed a feasible and acceptable tool, and supplementary guide, to facilitate consideration and incorporation of core principles and concepts of implementation science in applied health implementation research. Future research is needed to establish whether application of the tool and guide has an effect on the quality of implementation research

    Psychiatry during the Nazi era: ethical lessons for the modern professional

    Get PDF
    For the first time in history, psychiatrists during the Nazi era sought to systematically exterminate their patients. However, little has been published from this dark period analyzing what may be learned for clinical and research psychiatry. At each stage in the murderous process lay a series of unethical and heinous practices, with many psychiatrists demonstrating a profound commitment to the atrocities, playing central, pivotal roles critical to the success of Nazi policy. Several misconceptions led to this misconduct, including allowing philosophical constructs to define clinical practice, focusing exclusively on preventative medicine, allowing political pressures to influence practice, blurring the roles of clinicians and researchers, and falsely believing that good science and good ethics always co-exist. Psychiatry during this period provides a most horrifying example of how science may be perverted by external forces. It thus becomes crucial to include the Nazi era psychiatry experience in ethics training as an example of proper practice gone awry

    Reduction of aldehydes and hydrogen cyanide yields in mainstream cigarette smoke using an amine functionalised ion exchange resin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a well recognized cause of diseases such as lung cancer, chronic obstructive pulmonary disease and cardiovascular disease. Of the more than 5000 identified species in cigarette smoke, at least 150 have toxicological activity. For example, formaldehyde and acetaldehyde have been assigned as Group 1 and Group 2B carcinogens by IARC, and hydrogen cyanide has been identified as a respiratory and cardiovascular toxicant. Active carbon has been shown to be an effective material for the physical adsorption of many of the smoke volatile species. However, physical adsorption of acetaldehyde, formaldehyde and also hydrogen cyanide from smoke is less effective using carbon. Alternative methods for the removal of these species from cigarette smoke are therefore of interest. A macroporous, polystyrene based ion-exchange resin (Diaion<sup>®</sup>CR20) with surface amine group functionality has been investigated for its ability to react with aldehydes and HCN in an aerosol stream, and thus selectively reduce the yields of these compounds (in particular formaldehyde) in mainstream cigarette smoke.</p> <p>Results</p> <p>Resin surface chemistry was characterized using vapour sorption, XPS, TOF-SIMS and <sup>15</sup>N NMR. Diaion<sup>®</sup>CR20 was found to have structural characteristics indicating weak physisorption properties, but sufficient surface functionalities to selectively remove aldehydes and HCN from cigarette smoke. Using 60 mg of Diaion<sup>®</sup>CR20 in a cigarette cavity filter gave reductions in smoke formaldehyde greater than 50% (estimated to be equivalent to >80% of the formaldehyde present in the smoke vapour phase) independent of a range of flow rates. Substantial removal of HCN (>80%) and acetaldehyde (>60%) was also observed. The performance of Diaion<sup>®</sup>CR20 was found to be consistent over a test period of 6 months. The overall adsorption for the majority of smoke compounds measured appeared to follow a pseudo-first order approximation to second order kinetics.</p> <p>Conclusions</p> <p>This study has shown that Diaion<sup>®</sup>CR20 is a highly selective and efficient adsorbent for formaldehyde, acetaldehyde and HCN in cigarette smoke. The reductions for these compounds were greater than those achieved using an active carbon. The results also demonstrate that chemisorption can be an effective mechanism for the removal of certain vapour phase toxicants from cigarette smoke.</p

    Two distinct catalytic pathways for GH43 xylanolytic enzymes unveiled by X-ray and QM/MM simulations

    Get PDF
    Xylanolytic enzymes from glycoside hydrolase family 43 (GH43) are involved in the breakdown of hemicellulose, the second most abundant carbohydrate in plants. Here, we kinetically and mechanistically describe the non-reducing-end xylose-releasing exo-oligoxylanase activity and report the crystal structure of a native GH43 Michaelis complex with its substrate prior to hydrolysis. Two distinct calcium-stabilized conformations of the active site xylosyl unit are found, suggesting two alternative catalytic routes. These results are confirmed by QM/MM simulations that unveil the complete hydrolysis mechanism and identify two possible reaction pathways, involving different transition state conformations for the cleavage of xylooligosaccharides. Such catalytic conformational promiscuity in glycosidases is related to the open architecture of the active site and thus might be extended to other exo-acting enzymes. These findings expand the current general model of catalytic mechanism of glycosidases, a main reaction in nature, and impact on our understanding about their interaction with substrates and inhibitors

    Effect of Low Temperature on Growth and Ultra-Structure of Staphylococcus spp

    Get PDF
    The effect of temperature fluctuation is an important factor in bacterial growth especially for pathogens such as the staphylococci that have to remain viable during potentially harsh and prolonged transfer conditions between hosts. The aim of this study was to investigate the response of S. aureus, S. epidermidis, and S. lugdunensis when exposed to low temperature (4°C) for prolonged periods, and how this factor affected their subsequent growth, colony morphology, cellular ultra-structure, and amino acid composition in the non-cytoplasmic hydrolysate fraction. Clinical isolates were grown under optimal conditions and then subjected to 4°C conditions for a period of 8 wks. Cold-stressed and reference control samples were assessed under transmission electron microscopy (TEM) to identify potential ultra-structural changes. To determine changes in amino acid composition, cells were fractured to remove the lipid and cytoplasmic components and the remaining structural components were hydrolysed. Amino acid profiles for the hydrolysis fraction were then analysed for changes by using principal component analysis (PCA). Exposure of the three staphylococci to prolonged low temperature stress resulted in the formation of increasing proportions of small colony variant (SCV) phenotypes. TEM revealed that SCV cells had significantly thicker and more diffuse cell-walls than their corresponding WT samples for both S. aureus and S. epidermidis, but the changes were not significant for S. lugdunensis. Substantial species-specific alterations in the amino acid composition of the structural hydrolysate fraction were also observed in the cold-treated cells. The data indicated that the staphylococci responded over prolonged periods of cold-stress treatment by transforming into SCV populations. The observed ultra-structural and amino acid changes were proposed to represent response mechanisms for staphylococcal survival amidst hostile conditions, thus maintaining the viability of the species until favourable conditions arise again
    corecore