2,851 research outputs found
Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity
and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction
Recommended from our members
The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering
A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements
PMCID: PMC3591286This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
To respond or not to respond - a personal perspective of intestinal tolerance
For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
Recommended from our members
Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts
The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere–ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about ten days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin
PTPN11 mutations are not responsible for the Cardiofaciocutaneous (CFC) syndrome
Cardiofaciocutaneous (CFC) syndrome is a multiple congenital anomalies/mental retardation syndrome characterized by congenital heart defects, characteristic facial appearance, short stature, ectodermal abnormalities and mental retardation. It was described in 1986, and to date is of unknown genetic etiology. All reported cases are sporadic, born to non-consanguineous parents and have apparently normal chromosomes. Noonan and Costello syndromes remain its main differential diagnosis. the recent finding of PTPN11 missense mutations in 45-50% of the Noonan patients studied with penetrance of almost 100% and the fact that in animals mutations of this gene cause defects of semilunar valvulogenesis, made PTPN11 mutation screening in CFC patients a matter of interest. We sequenced the entire coding region of the PTPN11 gene in ten well-characterised CFC patients and found no base changes. We also studied PTPN11 cDNA in our patients and demonstrated that there are no interstitial deletions either. the genetic cause of CFC syndrome remains unknown, and PTPN11 can be reasonably excluded as a candidate gene for the CFC syndrome, which we regard as molecular evidence that CFC and Noonan syndromes are distinct genetic entities.Univ Sacred Heart, Ist Genet Med, I-00168 Rome, ItalyUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Ctr Med Genet, São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Dermatol, São Paulo, BrazilWeb of Scienc
High energy emission from microquasars
The microquasar phenomenon is associated with the production of jets by X-ray
binaries and, as such, may be associated with the majority of such systems. In
this chapter we briefly outline the associations, definite, probable, possible,
and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng
and G.E. Romero (eds.), to be published by Kluwer Academic Publishers,
Dordrecht, 2004. (19 pages
Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen
Acromyrmex leafcutter ants form a mutually beneficial symbiosis with the fungus Leucoagaricus gongylophorus and with Pseudonocardia bacteria. Both are vertically transmitted and actively maintained by the ants. The fungus garden is manured with freshly cut leaves and provides the sole food for the ant larvae, while Pseudonocardia cultures are reared on the ant-cuticle and make antifungal metabolites to help protect the cultivar against disease. If left unchecked, specialized parasitic Escovopsis fungi can overrun the fungus-garden and lead to colony collapse. We report that Escovopsis upregulates the production of two specialized metabolites when it infects the cultivar. These compounds inhibit Pseudonocardia and one, shearinine D, also reduces worker behavioral defences and is ultimately lethal when it accumulates in ant tissues. Our results are consistent with an active evolutionary arms race between Pseudonocardia and Escovopsis, which modifies both bacterial and behavioral defences such that colony collapse is unavoidable once Escovopsis infections escalate
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Attention modulates adaptive motor learning in the ‘broken escalator’ paradigm
The physical stumble caused by stepping onto a stationary (broken) escalator represents a locomotor aftereffect (LAE) that attests to a process of adaptive motor learning. Whether such learning is primarily explicit (requiring attention resources) or implicit (independent of attention) is unknown. To address this question, we diverted attention in the adaptation (MOVING) and aftereffect (AFTER) phases of the LAE by loading these phases with a secondary cognitive task (sequential naming of a vegetable, fruit and a colour). Thirty-six healthy adults were randomly assigned to 3 equally sized groups. They performed 5 trials stepping onto a stationary sled (BEFORE), 5 with the sled moving (MOVING) and 5 with the sled stationary again (AFTER). A 'Dual-Task-MOVING (DTM)' group performed the dual-task in the MOVING phase and the 'Dual-Task-AFTEREFFECT (DTAE)' group in the AFTER phase. The 'control' group performed no dual task. We recorded trunk displacement, gait velocity and gastrocnemius muscle EMG of the left (leading) leg. The DTM, but not the DTAE group, had larger trunk displacement during the MOVING phase, and a smaller trunk displacement aftereffect compared with controls. Gait velocity was unaffected by the secondary cognitive task in either group. Thus, adaptive locomotor learning involves explicit learning, whereas the expression of the aftereffect is automatic (implicit). During rehabilitation, patients should be actively encouraged to maintain maximal attention when learning new or challenging locomotor tasks
- …
