20 research outputs found
Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 × 6 × 6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties
The role of astrocyte-secreted matricellular proteins in central nervous system development and function
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation
Quantification of Gene Expression after Painful Nerve Injury: Validation of Optimal Reference Genes
Stably expressed housekeeping genes (HKGs) are necessary for standardization of transcript measurement by quantitative real time PCR (qRT-PCR). Peripheral nerve injury disrupts expression of numerous genes in sensory neurons, but the stability of conventional HKGs has not been tested in this context. We examined the stability of candidate HKGs during nerve injury, including the commonly used 18s ribosomal RNA (18s rRNA), β tubulin I (Tubb5) and β tubulin III (Tubb3), actin, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hypoxanthine phosphoribosyl transferase 1 (HPRT1), and mitogen activated protein kinase 6 (MAPK6). Total RNA for cDNA synthesis was isolated from dorsal root ganglia of rats at 3, 7 and 21 days following either skin incision alone or spinal nerve ligation, after which the axotomized and adjacent ganglia were analyzed separately. Relative stability of HKGs was determined using statistical algorithms geNorm and NormFinder. Both analyses identified MAPK6 and GAPDH as the two most stable HKGs for normalizing gene expression for qRT-PCR analysis in the context of peripheral nerve injury. Our findings indicate that a priori analysis of HKG expression levels is important for accurate normalization of gene expression in models of nerve injury
Successful Phenotype Improvement following Gene Therapy for Severe Hemophilia A in Privately Owned Dogs
Cooperativity between remote sites of ectopic spiking allows afterdischarge to be initiated and maintained at different locations
Many symptoms of nerve damage arise from ectopic spiking caused by hyperexcitability. Ectopic spiking can originate at the site of axonal damage and elsewhere within affected neurons. This raises the question of whether localized damage elicits cell-wide changes in excitability and/or if localized changes in excitability can drive abnormal spiking at remote locations. Computer modeling revealed an example of the latter involving afterdischarge (AD) – stimulus-evoked spiking that outlasts stimulation. We found that AD originating in a hyperexcitable region of axon could shift to the soma where it was maintained. This repositioning of ectopic spike initiation was independent of distance between the two sites but relied on the rate and number of ectopic spikes originating from the first site. Nonlinear dynamical analysis of a reduced model demonstrated that properties which rendered the axonal site prone to initiating AD discouraged it from maintaining AD, whereas the soma had the inverse properties thus enabling the two sites to interact cooperatively. A first phase of AD originating in the axon could, by providing sufficient drive to trigger somatic AD, give way to a second phase of AD originating in the soma such that spiking continued when axonal AD failed. Ectopic spikes originating from the soma during phase 2 AD propagated successfully through the defunct site of axonal spike initiation. This novel mechanism whereby ectopic spiking at one site facilitates ectopic spiking at another site is likely to contribute to the chronification of hyperexcitability in conditions such as neuropathic pain
