36 research outputs found

    Fluid shear stress modulation of hepatocyte like cell function

    Get PDF
    Freshly isolated human adult hepatocytes are considered to be the gold standard tool for in vitro studies. However, primary hepatocyte scarcity, cell cycle arrest and the rapid loss of cell phenotype limit their widespread deployment. Human embryonic stem cells and induced pluripotent stem cells provide renewable sources of hepatocyte-like cells (HLCs). Despite the use of various differentiation methodologies, HLCs like primary human hepatocytes exhibit unstable phenotype in culture. It has been shown that the functional capacity can be improved by adding back elements of human physiology, such as cell co-culture or through the use of natural and/or synthetic surfaces. In this study, the effect of fluid shear stress on HLC performance was investigated. We studied two important liver functions, cytochrome P450 drug metabolism and serum protein secretion, in static cultures and those exposed to fluid shear stress. Our study demonstrates that fluid shear stress improved Cyp1A2 activity by approximately fivefold. This was paralleled by an approximate ninefold increase in sensitivity to a drug, primarily metabolised by Cyp2D6. In addition to metabolic capacity, fluid shear stress also improved hepatocyte phenotype with an approximate fourfold reduction in the secretion of a foetal marker, alpha-fetoprotein. We believe these studies highlight the importance of introducing physiologic cues in cell-based models to improve somatic cell phenotype

    Metabolite damage and its repair or pre-emption

    No full text
    It is increasingly evident that metabolites suffer various kinds of damage, that such damage happens in all organisms, and that cells have dedicated systems for damage repair and containment. Firstly, chemical biology is demonstrating that diverse metabolites are damaged by side-reactions of ‘promiscuous’ enzymes or by spontaneous chemical reactions, that the products are useless or toxic, and that the unchecked buildup of these products can be devastating. Secondly, genetic and genomic evidence from pro- and eukaryotes is implicating a network of novel, conserved enzymes that repair damaged metabolites or somehow pre-empt damage. Metabolite (i.e. small molecule) repair is analogous to macromolecule (DNA and protein) repair and appears from comparative genomic evidence to be equally widespread. Comparative genomics also implies that metabolite repair could be the function of many conserved protein families lacking known activities. How – and how well – cells deal with metabolite damage impacts fields ranging from medical genetics to metabolic engineering
    corecore