122 research outputs found
Quality perception of organically grown tomatoes (Lycopersicon esculentum Mill.) in Vienna, Austria
Austria is one of the major organic tomato producing countries for local and export marketing. These tomatoes are produced in parts of Austria especially around Vienna where their production system has to meet stringent organic quality standards in both local and international markets. These quality standards may put considerable strain on farmers and are normally formulated without famers participation so may not be wholly representative of the farmers quality interpretation. The aim of this paper is therefore to determine the Austrian organic tomatoes growers perception and practice of quality and challenges. Qualitative semi-structured interviews were carried out among 28 organic tomatoes farmers in Vienna, Austria. Findings suggest that quality of organic tomatoes is mainly perceived in terms of both informal values (big fruit size, long shelf life, food security and amount of income received from tomato sales) as well as formal norms (non- application of chemicals, human health, damage free, sweet taste, red colour, and juiciness). There were no gendered differences in quality perception among the growers. High costs of production inputs were identified as the main challenge to attaining quality in organic tomatoes. Following these findings, there is need for effective participation of growers in formulation of standards as well as subsidizing of production inputs by the government. The Austrian tomato growers as well as local and international retailers should work closely to increase the price received by the Austrian organic tomato growers so that it more adequately covers their production costs.Int. J. Agril. Res. Innov. & Tech. 5 (2): 16-20, December, 201
S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation
S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation
Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level
Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength
Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North
Transcriptomic analysis of the temporal host response to skin infestation with the ectoparasitic mite Psoroptes ovis
<p>Abstract</p> <p>Background</p> <p>Infestation of ovine skin with the ectoparasitic mite <it>Psoroptes ovis </it>results in a rapid cutaneous immune response, leading to the crusted skin lesions characteristic of sheep scab. Little is known regarding the mechanisms by which such a profound inflammatory response is instigated and to identify novel vaccine and drug targets a better understanding of the host-parasite relationship is essential. The main objective of this study was to perform a combined network and pathway analysis of the <it>in vivo </it>skin response to infestation with <it>P. ovis </it>to gain a clearer understanding of the mechanisms and signalling pathways involved.</p> <p>Results</p> <p>Infestation with <it>P. </it>ovis resulted in differential expression of 1,552 genes over a 24 hour time course. Clustering by peak gene expression enabled classification of genes into temporally related groupings. Network and pathway analysis of clusters identified key signalling pathways involved in the host response to infestation. The analysis implicated a number of genes with roles in allergy and inflammation, including pro-inflammatory cytokines (<it>IL1A, IL1B, IL6, IL8 </it>and <it>TNF</it>) and factors involved in immune cell activation and recruitment (<it>SELE, SELL, SELP, ICAM1, CSF2, CSF3, CCL2 </it>and <it>CXCL2</it>). The analysis also highlighted the influence of the transcription factors NF-kB and AP-1 in the early pro-inflammatory response, and demonstrated a bias towards a Th2 type immune response.</p> <p>Conclusions</p> <p>This study has provided novel insights into the signalling mechanisms leading to the development of a pro-inflammatory response in sheep scab, whilst providing crucial information regarding the nature of mite factors that may trigger this response. It has enabled the elucidation of the temporal patterns by which the immune system is regulated following exposure to <it>P. ovis</it>, providing novel insights into the mechanisms underlying lesion development. This study has improved our existing knowledge of the host response to <it>P. ovis</it>, including the identification of key parallels between sheep scab and other inflammatory skin disorders and the identification of potential targets for disease control.</p
Null Genotypes of GSTM1 and GSTT1 Contribute to Risk of Cervical Neoplasia: An Evidence-Based Meta-Analysis
Taxonomic and evolutionary analysis of Zaprionus indianus and its colonization of Palearctic and Neotropical regions
Zaprionus indianus is a dipteran (Drosophilidae) with a wide distribution throughout the tropics and temperate Palearctic and Nearctic regions. There have been proposals to reclassify the genus Zaprionus as a subgenus or group of the genus Drosophila because various molecular markers have indicated a close relationship between Zaprionus species and the immigrans-Hirtodrosophila radiation within Drosophila. These markers, together with alloenzymes and quantitative traits, have been used to describe the probable scenario for the expansion of Zaprionus indianus from its center of dispersal (Africa) to regions of Asia (ancient dispersal) and the Americas (recent dispersal). The introduction of Z. indianus into Brazil was first reported in 1999 and the current consensus is that the introduced flies came from high-latitude African populations through the importation of fruit. Once in Brazil, Z. indianus spread rapidly throughout the Southeast and then to the rest of the country, in association with highway-based fruit commerce. These and other aspects of the evolutionary biology of Z. indianus are addressed in this review, including a description of a probable route for this species’ dispersal during its recent expansion
Agrobiodiversity and in situ conservation in quilombola home gardens with different intensities of urbanization
- …
