1,077 research outputs found

    Utilising daily diaries to examine oral health experiences associated with dentine hypersensitivity

    Get PDF
    Background: The current investigation examined the determinants of oral health experiences associated with dentine hypersensitivity using prospective diary methodology. Methods: Staff and students from a large UK university who had self-diagnosed dentine hypersensitivity completed an online daily diary and text survey for two weeks recording their mood, oral health-related coping behaviours, coping and pain appraisals, pain experiences and functional limitations. Cross sectional and lagged path analyses were employed to examine relationships. Results: 101 participants took part in the diary study. Participants had a mean age of 26.3 years (range=18-63) and most were female (N=69). Individuals who used more oral health-related coping behaviours predicted and experienced greater levels of pain on subsequent days. Negative mood also predicted worse pain outcomes. The daily diary method provided a useful avenue for investigating variations in oral health experiences and relationships between variables that can fluctuate daily. Conclusions: Psychological variables such as coping and mood play an important role in the pain experiences of people with dentine hypersensitivity. The study highlights the benefits of using prospective methods to elucidate the experiences of people with oral condition

    Causes and importance of new particle formation in the present-day and pre-industrial atmospheres

    Get PDF
    New particle formation has been estimated to produce around half of cloud-forming particles in the present-day atmosphere, via gas-to-particle conversion. Here we assess the importance of new particle formation (NPF) for both the present-day and the pre-industrial atmospheres. We use a global aerosol model with parametrisations of NPF from previously published CLOUD chamber experiments involving sulphuric acid, ammonia, organic molecules and ions. We find that NPF produces around 67% of cloud condensation nuclei at 0.2% supersaturation (CCN0.2%) at the level of low clouds in the pre-industrial atmosphere (estimated uncertainty range 45-84%) and 54% in the present day (estimated uncertainty range 38-66%). Concerning causes, we find that the importance of biogenic volatile organic compounds (BVOCs) in NPF and CCN formation is greater than previously thought. Removing BVOCs and hence all secondary organic aerosol from our model reduces low-cloud-level CCN concentrations at 0.2% supersaturation by 26% in the present-day atmosphere and 41% in the pre-industrial. Around three-quarters of this reduction is due to the tiny fraction of the oxidation products of BVOCs that have sufficiently low volatility to be involved in NPF and early growth. Furthermore, we estimate that 40% of pre-industrial CCN0.2% are formed via ion-induced NPF, compared with 27% in the present-day, although we caution that the ion-induced fraction of NPF involving BVOCs is poorly measured at present. Our model suggests that the effect of changes in cosmic ray intensity on CCN is small and unlikely to be comparable to the effect of large variations in natural primary aerosol emissions

    Complex temporal climate signals drive the emergence of human water-borne disease

    Get PDF
    Predominantly occurring in developing parts of the world, Buruli ulcer is a severely disabling mycobacterium infection which often leads to extensive necrosis of the skin. While the exact route of transmission remains uncertain, like many tropical diseases, associations with climate have been previously observed and could help identify the causative agent's ecological niche. In this paper, links between changes in rainfall and outbreaks of Buruli ulcer in French Guiana, an ultraperipheral European territory in the northeast of South America, were identified using a combination of statistical tests based on singular spectrum analysis, empirical mode decomposition and cross-wavelet coherence analysis. From this, it was possible to postulate for the first time that outbreaks of Buruli ulcer can be triggered by combinations of rainfall patterns occurring on a long (i.e., several years) and short (i.e., seasonal) temporal scale, in addition to stochastic events driven by the El Nino-Southern Oscillation that may disrupt or interact with these patterns. Long-term forecasting of rainfall trends further suggests the possibility of an upcoming outbreak of Buruli ulcer in French Guiana

    How environmental managers perceive and approach the issue of invasive species: the case of Japanese knotweed s.l. (Rhône River, France)

    Get PDF
    We would like to thank Springer for publishing our article. The final publication is available at http://link.springer.com/article/10.1007%2Fs10530-015-0969-1International audienceStudying the perceptions of stakeholders or interested parties is a good way to better understand behaviours and decisions. This is especially true for the management of invasive species such as Japanese knotweed s.l. This plant has spread widely in the Rhône basin, where significant financial resources have been devoted to its management. However, no control technique is recognized as being particularly effective. Many uncertainties remain and many documents have been produced by environmental managers to disseminate current knowledge about the plant and its management. This article aims at characterizing the perceptions that environmental managers have of Japanese knotweed s.l. A discourse analysis was conducted on the printed documentation produced about Japanese knotweed s.l. by environmental managers working along the Rhône River (France). The corpus was both qualitatively and quantitatively analysed. The results indicated a diversity of perceptions depending on the type of environmental managers involved, as well as the geographicalareas and scales on which they acted. Whereas some focused on general knowledge relating to the origins and strategies of colonization, others emphasized the diversity and efficacy of the prospective eradication techniques. There is a real interest in implementing targeted actions to meet local issues. To do so, however, these issues must be better defined. This is a challenging task, as it must involve all types of stakeholders

    Demographic History of Indigenous Populations in Mesoamerica Based on mtDNA Sequence Data

    Get PDF
    The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before

    Targeting the hypoxic fraction of tumours using hypoxia activated prodrugs

    Get PDF
    The presence of a microenvironment within most tumours containing regions of low oxygen tension or hypoxia has profound biological and therapeutic implications. Tumour hypoxia is known to promote the development of an aggressive phenotype, resistance to both chemotherapy and radiotherapy and is strongly associated with poor clinical outcome. Paradoxically, it is recognised as a high priority target and one therapeutic strategies designed to eradicate hypoxic cells in tumours are a group of compounds known collectively as hypoxia activated prodrugs (HAPs) or bioreductive drugs. These drugs are inactive prodrugs that require enzymatic activation (typically by 1 or 2 electron oxidoreductases) to generate cytotoxic species with selectivity for hypoxic cells being determined by (i) the ability of oxygen to either reverse or inhibit the activation process and (ii) the presence of elevated expression of oxidoreductases in tumours. The concepts underpinning HAP development were established over 40 years ago and have been refined over the years to produce a new generation of HAPs that are under preclinical and clinical development. The purpose of this article is to describe current progress in the development of HAPs focusing on the mechanisms of action, preclinical properties and clinical progress of leading examples

    The role of low-volatility organic compounds in initial particle growth in the atmosphere

    Get PDF
    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday1. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres2, 3. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles4, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth5, 6, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer7, 8, 9, 10. Although recent studies11, 12, 13 predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon2, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)2, 14, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown15 that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10−4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10−4.5 to 10−0.5 micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations

    Will the Conscious–Subconscious Pacing Quagmire Help Elucidate the Mechanisms of Self-Paced Exercise? New Opportunities in Dual Process Theory and Process Tracing Methods

    Get PDF
    The extent to which athletic pacing decisions are made consciously or subconsciously is a prevailing issue. In this article we discuss why the one-dimensional conscious–subconscious debate that has reigned in the pacing literature has suppressed our understanding of the multidimensional processes that occur in pacing decisions. How do we make our decisions in real-life competitive situations? What information do we use and how do we respond to opponents? These are questions that need to be explored and better understood, using smartly designed experiments. The paper provides clarity about key conscious, preconscious, subconscious and unconscious concepts, terms that have previously been used in conflicting and confusing ways. The potential of dual process theory in articulating multidimensional aspects of intuitive and deliberative decision-making processes is discussed in the context of athletic pacing along with associated process-tracing research methods. In attempting to refine pacing models and improve training strategies and psychological skills for athletes, the dual-process framework could be used to gain a clearer understanding of (1) the situational conditions for which either intuitive or deliberative decisions are optimal; (2) how intuitive and deliberative decisions are biased by things such as perception, emotion and experience; and (3) the underlying cognitive mechanisms such as memory, attention allocation, problem solving and hypothetical thought

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore