78 research outputs found
Assisted freeze-out
We explore a class of dark matter models with two dark matter candidates,
only one interacts with the standard model sector. One of the dark matter is
thermalized with the assistance of the other stable particle. While both stable
particles contribute to the total relic density only one can elastically
scatter with nuclei, thus effectively reducing the direct detection rate.Comment: 16 pages, 13 figures, minor corrections, the final version published
in JCA
Effects of Residue Background Events in Direct Dark Matter Detection Experiments on the Determination of the WIMP Mass
In the earlier work on the development of a model-independent data analysis
method for determining the mass of Weakly Interacting Massive Particles (WIMPs)
by using measured recoil energies from direct Dark Matter detection experiments
directly, it was assumed that the analyzed data sets are background-free, i.e.,
all events are WIMP signals. In this article, as a more realistic study, we
take into account a fraction of possible residue background events, which pass
all discrimination criteria and then mix with other real WIMP-induced events in
our data sets. Our simulations show that, for the determination of the WIMP
mass, the maximal acceptable fraction of residue background events in the
analyzed data sets of O(50) total events is ~20%, for background windows of the
entire experimental possible energy ranges, or in low energy ranges; while, for
background windows in relatively higher energy ranges, this maximal acceptable
fraction of residue background events can not be larger than ~10%. For a WIMP
mass of 100 GeV with 20% background events in the windows of the entire
experimental possible energy ranges, the reconstructed WIMP mass and the
1-sigma statistical uncertainty are ~97 GeV^{+61%}_{-35%} (~94
GeV^{+55%}_{-33%} for background-free data sets).Comment: 27 pages, 22 eps figures; v2: revised version for publication,
references added and update
Dark Matter Direct Detection with Non-Maxwellian Velocity Structure
The velocity distribution function of dark matter particles is expected to
show significant departures from a Maxwell-Boltzmann distribution. This can
have profound effects on the predicted dark matter - nucleon scattering rates
in direct detection experiments, especially for dark matter models in which the
scattering is sensitive to the high velocity tail of the distribution, such as
inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for
experiments that require high energy recoil events, such as many directionally
sensitive experiments. Here we determine the velocity distribution functions
from two of the highest resolution numerical simulations of Galactic dark
matter structure (Via Lactea II and GHALO), and study the effects for these
scenarios. For directional detection, we find that the observed departures from
Maxwell-Boltzmann increase the contrast of the signal and change the typical
direction of incoming DM particles. For iDM, the expected signals at direct
detection experiments are changed dramatically: the annual modulation can be
enhanced by more than a factor two, and the relative rates of DAMA compared to
CDMS can change by an order of magnitude, while those compared to CRESST can
change by a factor of two. The spectrum of the signal can also change
dramatically, with many features arising due to substructure. For LDM the
spectral effects are smaller, but changes do arise that improve the
compatibility with existing experiments. We find that the phase of the
modulation can depend upon energy, which would help discriminate against
background should it be found.Comment: 34 pages, 16 figures, submitted to JCAP. Tables of g(v_min), the
integral of f(v)/v from v_min to infinity, derived from our simulations, are
available for download at http://astro.berkeley.edu/~mqk/dmdd
Baryogenesis, Electric Dipole Moments and Dark Matter in the MSSM
We study the implications for electroweak baryogenesis (EWB) within the
minimal supersymmetric Standard Model (MSSM) of present and future searches for
the permanent electric dipole moment (EDM) of the electron, for neutralino dark
matter, and for supersymmetric particles at high energy colliders. We show that
there exist regions of the MSSM parameter space that are consistent with both
present two-loop EDM limits and the relic density and that allow for successful
EWB through resonant chargino and neutralino processes at the electroweak phase
transition. We also show that under certain conditions the lightest neutralino
may be simultaneously responsible for both the baryon asymmetry and relic
density. We give present constraints on chargino/neutralino-induced EWB implied
by the flux of energetic neutrinos from the Sun, the prospective constraints
from future neutrino telescopes and ton-sized direct detection experiments, and
the possible signatures at the Large Hadron Collider and International Linear
Collider.Comment: 32 pages, 10 figures; version to appear on JHE
Model Independent Approach to Focus Point Supersymmetry: from Dark Matter to Collider Searches
The focus point region of supersymmetric models is compelling in that it
simultaneously features low fine-tuning, provides a decoupling solution to the
SUSY flavor and CP problems, suppresses proton decay rates and can accommodate
the WMAP measured cold dark matter (DM) relic density through a mixed
bino-higgsino dark matter particle. We present the focus point region in terms
of a weak scale parameterization, which allows for a relatively model
independent compilation of phenomenological constraints and prospects. We
present direct and indirect neutralino dark matter detection rates for two
different halo density profiles, and show that prospects for direct DM
detection and indirect detection via neutrino telescopes such as IceCube and
anti-deuteron searches by GAPS are especially promising. We also present LHC
reach prospects via gluino and squark cascade decay searches, and also via
clean trilepton signatures arising from chargino-neutralino production. Both
methods provide a reach out to m_{\tg}\sim 1.7 TeV. At a TeV-scale linear
e^+e^- collider (LC), the maximal reach is attained in the \tz_1\tz_2 or
\tz_1\tz_3 channels. In the DM allowed region of parameter space, a
\sqrt{s}=0.5 TeV LC has a reach which is comparable to that of the LHC.
However, the reach of a 1 TeV LC extends out to m_{\tg}\sim 3.5 TeV.Comment: 34 pages plus 36 eps figure
Limits on Dark Matter Effective Field Theory Parameters with CRESST-II
CRESST is a direct dark matter search experiment, aiming for an observation
of nuclear recoils induced by the interaction of dark matter particles with
cryogenic scintillating calcium tungstate crystals. Instead of confining
ourselves to standard spin-independent and spin-dependent searches, we
re-analyze data from CRESST-II using a more general effective field theory
(EFT) framework. On many of the EFT coupling constants, improved exclusion
limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
Mixed Wino Dark Matter: Consequences for Direct, Indirect and Collider Detection
In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass
unification, the predicted relic abundance of neutralinos usually exceeds the
strict limits imposed by the WMAP collaboration. One way to obtain the correct
relic abundance is to abandon gaugino mass universality and allow a mixed
wino-bino lightest SUSY particle (LSP). The enhanced annihilation and
scattering cross sections of mixed wino dark matter (MWDM) compared to bino
dark matter lead to enhanced rates for direct dark matter detection, as well as
for indirect detection at neutrino telescopes and for detection of dark matter
annihilation products in the galactic halo. For collider experiments, MWDM
leads to a reduced but significant mass gap between the lightest neutralinos so
that chi_2^0 two-body decay modes are usually closed. This means that dilepton
mass edges-- the starting point for cascade decay reconstruction at the CERN
LHC-- should be accessible over almost all of parameter space. Measurement of
the m_{\tz_2}-m_{\tz_1} mass gap at LHC plus various sparticle masses and cross
sections as a function of beam polarization at the International Linear
Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in
the universe.Comment: 29 pages including 19 eps figure
Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter
In supersymmetric models with non-universal gaugino masses, it is possible to
have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the
gaugino eigenstates experience little mixing so that the lightest SUSY particle
remains either pure bino or pure wino. The neutralino relic density can only be
brought into accord with the WMAP measured value when bino-wino co-annihilation
(BWCA) acts to enhance the dark matter annihilation rate. We map out parameter
space regions and mass spectra which are characteristic of the BWCA scenario.
Direct and indirect dark matter detection rates are shown to be typically very
low. At collider experiments, the BWCA scenario is typified by a small mass gap
m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays
of \tilde Z_2 are not allowed. However, in this case the second lightest
neutralino has an enhanced loop decay branching fraction to photons. While the
photonic neutralino decay signature looks difficult to extract at the Fermilab
Tevatron, it should lead to distinctive events at the CERN LHC and at a linear
e^+e^- collider.Comment: 44 pages, 21 figure
- …
