2,806 research outputs found
Confronting Synchrotron Shock and Inverse Comptonization Models with GRB Spectral Evolution
The time-resolved spectra of gamma-ray bursts (GRBs) remain in conflict with
many proposed models for these events. After proving that most of the bursts in
our sample show evidence for spectral "shape-shifting", we discuss what
restrictions that BATSE time-resolved burst spectra place on current models. We
find that the synchrotron shock model does not allow for the steep low-energy
spectral slope observed in many bursts, including GRB 970111. We also determine
that saturated Comptonization with only Thomson thinning fails to explain the
observed rise and fall of the low-energy spectral slope seen in GRB 970111 and
other bursts. This implies that saturated Comptonization models must include
some mechanism which can cause the Thomson depth to increase intially in
pulses.Comment: (5 pages, 3 figures, to appear in Proceedings of the Fourth
Huntsville Symposium on Gamma-Ray Bursts
Testing the Invariance of Cooling Rate in Gamma-Ray Burst Pulses
Recent studies have found that the spectral evolution of pulses within
gamma-ray bursts (GRBs) is consistent with simple radiative cooling. Perhaps
more interesting was a report that some bursts may have a single cooling rate
for the multiple pulses that occur within it. We determine the probability that
the observed "cooling rate invariance" is purely coincidental by sampling
values from the observed distribution of cooling rates. We find a 0.1-26%
probability that we would randomly observe a similar degree of invariance based
on a variety of pulse selection methods and pulse comparison statistics. This
probability is sufficiently high to warrant skepticism of any intrinsic
invariance in the cooling rate.Comment: 4 pages, 1 figure, to appear in Proceedings of the Fourth Huntsville
Symposium on Gamma-Ray Burst
Biochemical, kinetic, and spectroscopic characterization of Ruegeria pomeroyi DddW - A mononuclear iron-dependent DMSP lyase
The osmolyte dimethylsulfoniopropionate (DMSP) is a key nutrient in marine environments and its catabolism by bacteria through enzymes known as DMSP lyases generates dimethylsulfide (DMS), a gas of importance in climate regulation, the sulfur cycle, and signaling to higher organisms. Despite the environmental significance of DMSP lyases, little is known about how they function at the mechanistic level. In this study we biochemically characterize DddW, a DMSP lyase from the model roseobacter Ruegeria pomeroyi DSS-3. DddW is a 16.9 kDa enzyme that contains a C-terminal cupin domain and liberates acrylate, a proton, and DMS from the DMSP substrate. Our studies show that as-purified DddW is a metalloenzyme, like the DddQ and DddP DMSP lyases, but contains an iron cofactor. The metal cofactor is essential for DddW DMSP lyase activity since addition of the metal chelator EDTA abolishes its enzymatic activity, as do substitution mutations of key metal-binding residues in the cupin motif (His81, His83, Glu87, and His121). Measurements of metal binding affinity and catalytic activity indicate that Fe(II) is most likely the preferred catalytic metal ion with a nanomolar binding affinity. Stoichiometry studies suggest DddW requires one Fe(II) per monomer. Electronic absorption and electron paramagnetic resonance (EPR) studies show an interaction between NO and Fe(II)-DddW, with NO binding to the EPR silent Fe(II) site giving rise to an EPR active species (g = 4.29, 3.95, 2.00). The change in the rhombicity of the EPR signal is observed in the presence of DMSP, indicating that substrate binds to the iron site without displacing bound NO. This work provides insight into the mechanism of DMSP cleavage catalyzed by DddW
A Thermal-Nonthermal Inverse Compton Model for Cyg X-1
Using Monte Carlo methods to simulate the inverse Compton scattering of soft
photons, we model the spectrum of the Galactic black hole candidate Cyg X-1,
which shows evidence of a nonthermal tail extending beyond a few hundred keV.
We assume an ad hoc sphere of leptons, whose energy distribution consists of a
Maxwellian plus a high energy power-law tail, and inject 0.5 keV blackbody
photons. The spectral data is used to constrain the nonthermal plasma fraction
and the power-law index assuming a reasonable Maxwellian temperature and
Thomson depth. A small but non-negligible fraction of nonthermal leptons is
needed to explain the power-law tail.Comment: 5 pages, 2 PostScript figure, uses aipproc.sty, to appear in
Proceedings of Fourth Compton Symposiu
Local dielectric spectroscopy of near-surface glassy polymer dynamics
A non-contact scanning-probe-microscopy method was used to probe local
near-surface dielectric susceptibility and dielectric relaxation in
poly-vinyl-acetate (PVAc) near the glass transition. Dielectric spectra were
measured from 10-4 Hz to 102 Hz as a function of temperature. The measurements
probed a 20 nm thick layer below the free-surface of a bulk film. A small (4 K)
reduction in glass transition temperature and moderate narrowing of the
distribution of relaxation times was found. In contrast to results for
ultra-thin-films confined on or between metallic electrodes, no reduction in
the dielectric strength was found, inconsistent with the immobilization of
slower modes.Comment: submitte
Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft
In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins. This paper addresses simulation modeling requirements that are unique to turboprop transport aircraft and highlights the growing need for aerodynamic models suitable for stall training for these configurations. A review of prominent accidents that involved aerodynamic stall is used to illustrate various modeling features unique to turboprop configurations and the impact of stall behavior on susceptibility to loss of control that has led to new training requirements. This is followed by an overview of stability and control behavior of straight-wing turboprops, the related aerodynamic characteristics, and a summary of recent experimental studies on icing effects. In addition, differences in flight dynamics behavior between swept-wing jets and straight-wing turboprop configurations are discussed to compare and contrast modeling requirements. Specific recommendations for aerodynamic models along with further research needs and data measurements are also provided.
GRB990123: The Case for Saturated Comptonization
The recent simultaneous detection of optical, X-ray and gamma-ray photons
from GRB990123 during the burst provides the first broadband multi-wavelength
characterization of the burst spectrum and evolution. Here we show that a
direct correlation exists between the time-varying gamma-ray spectral shape and
the prompt optical emission. This combined with the unique signatures of the
time-resolved spectra of GRB990123 convincingly supports earlier predictions of
the saturated Comptonization model. Contrary to other suggestions, we find that
the entire continuum from optical to gamma-rays can be generated from a single
source of leptons (electrons and pairs). The optical flux only appears to lag
the gamma-ray flux due to the high initial Thomson depth of the plasma. Once
the plasma has completely thinned out, the late time afterglow behavior of our
model is the same as in standard models based on the Blandford-McKee (1976)
solution.Comment: 10 pages, including 3 figures and 1 table, submitted to The
Astrophysical Journal Letter
Interpreting the Ionization Sequence in Star-Forming Galaxy Emission-Line Spectra
High ionization star forming (SF) galaxies are easily identified with strong
emission line techniques such as the BPT diagram, and form an obvious
ionization sequence on such diagrams. We use a locally optimally emitting cloud
model to fit emission line ratios that constrain the excitation mechanism,
spectral energy distribution, abundances and physical conditions along the
star-formation ionization sequence. Our analysis takes advantage of the
identification of a sample of pure star-forming galaxies, to define the
ionization sequence, via mean field independent component analysis. Previous
work has suggested that the major parameter controlling the ionization level in
SF galaxies is the metallicity. Here we show that the observed SF- sequence
could alternatively be interpreted primarily as a sequence in the distribution
of the ionizing flux incident on gas spread throughout a galaxy. Metallicity
variations remain necessary to model the SF-sequence, however, our best models
indicate that galaxies with the highest and lowest observed ionization levels
(outside the range -0.37 < log [O III]/H\b{eta} < -0.09) require the variation
of an additional physical parameter other than metallicity, which we determine
to be the distribution of ionizing flux in the galaxy.Comment: 41 pages, 17 figures, 9 tables, accepted to MNRA
- …
