8,516 research outputs found
Preliminary designs for X-ray source modifications for the Marshall Space Flight Center's X-ray calibration facility
The objective of this investigation is to develop preliminary designs for modifications to the X-ray source of the MSFC X-Ray Calibration Facility. Recommendations are made regarding: (1) the production of an unpolarized X-ray beam, (2) modification of the source to provide characteristic X-rays with energies up to 40 keV, and (3) addition of the capability to calibrate instruments in the extreme ultraviolet wavelength region
Target Apps Selection: Towards a Unified Search Framework for Mobile Devices
With the recent growth of conversational systems and intelligent assistants
such as Apple Siri and Google Assistant, mobile devices are becoming even more
pervasive in our lives. As a consequence, users are getting engaged with the
mobile apps and frequently search for an information need in their apps.
However, users cannot search within their apps through their intelligent
assistants. This requires a unified mobile search framework that identifies the
target app(s) for the user's query, submits the query to the app(s), and
presents the results to the user. In this paper, we take the first step forward
towards developing unified mobile search. In more detail, we introduce and
study the task of target apps selection, which has various potential real-world
applications. To this aim, we analyze attributes of search queries as well as
user behaviors, while searching with different mobile apps. The analyses are
done based on thousands of queries that we collected through crowdsourcing. We
finally study the performance of state-of-the-art retrieval models for this
task and propose two simple yet effective neural models that significantly
outperform the baselines. Our neural approaches are based on learning
high-dimensional representations for mobile apps. Our analyses and experiments
suggest specific future directions in this research area.Comment: To appear at SIGIR 201
Learning a Deep Listwise Context Model for Ranking Refinement
Learning to rank has been intensively studied and widely applied in
information retrieval. Typically, a global ranking function is learned from a
set of labeled data, which can achieve good performance on average but may be
suboptimal for individual queries by ignoring the fact that relevant documents
for different queries may have different distributions in the feature space.
Inspired by the idea of pseudo relevance feedback where top ranked documents,
which we refer as the \textit{local ranking context}, can provide important
information about the query's characteristics, we propose to use the inherent
feature distributions of the top results to learn a Deep Listwise Context Model
that helps us fine tune the initial ranked list. Specifically, we employ a
recurrent neural network to sequentially encode the top results using their
feature vectors, learn a local context model and use it to re-rank the top
results. There are three merits with our model: (1) Our model can capture the
local ranking context based on the complex interactions between top results
using a deep neural network; (2) Our model can be built upon existing
learning-to-rank methods by directly using their extracted feature vectors; (3)
Our model is trained with an attention-based loss function, which is more
effective and efficient than many existing listwise methods. Experimental
results show that the proposed model can significantly improve the
state-of-the-art learning to rank methods on benchmark retrieval corpora
The Potential of Learned Index Structures for Index Compression
Inverted indexes are vital in providing fast key-word-based search. For every
term in the document collection, a list of identifiers of documents in which
the term appears is stored, along with auxiliary information such as term
frequency, and position offsets. While very effective, inverted indexes have
large memory requirements for web-sized collections. Recently, the concept of
learned index structures was introduced, where machine learned models replace
common index structures such as B-tree-indexes, hash-indexes, and
bloom-filters. These learned index structures require less memory, and can be
computationally much faster than their traditional counterparts. In this paper,
we consider whether such models may be applied to conjunctive Boolean querying.
First, we investigate how a learned model can replace document postings of an
inverted index, and then evaluate the compromises such an approach might have.
Second, we evaluate the potential gains that can be achieved in terms of memory
requirements. Our work shows that learned models have great potential in
inverted indexing, and this direction seems to be a promising area for future
research.Comment: Will appear in the proceedings of ADCS'1
Personal propulsion unit Patent
Lightweight propulsion unit for movement of personnel and equipment across lunar surfac
Investigation of single crystal microwave acoustical delay line materials Final report
Single crystals for microwave acoustical equipment improved by MgO dopin
- …
