4,857 research outputs found
Frequency distributions: from the sun to the earth
The space environment is forever changing on all spatial and temporal scales. Energy releases are observed in numerous dynamic phenomena (e.g. solar flares, coronal mass ejections, solar energetic particle events) where measurements provide signatures of the dynamics. Parameters (e.g. peak count rate, total energy released, etc.) describing these phenomena are found to have frequency size distributions that follow power-law behavior. Natural phenomena on Earth, such as earthquakes and landslides, display similar power-law behavior. This suggests an underlying universality in nature and poses the question of whether the distribution of energy is the same for all these phenomena. Frequency distributions provide constraints for models that aim to simulate the physics and statistics observed in the individual phenomenon. The concept of self-organized criticality (SOC), also known as the "avalanche concept", was introduced by Bak et al. (1987, 1988), to characterize the behavior of dissipative systems that contain a large number of elements interacting over a short range. The systems evolve to a critical state in which a minor event starts a chain reaction that can affect any number of elements in the system. It is found that frequency distributions of the output parameters from the chain reaction taken over a period of time can be represented by power-laws. During the last decades SOC has been debated from all angles. New SOC models, as well as non-SOC models have been proposed to explain the power-law behavior that is observed. Furthermore, since Bak's pioneering work in 1987, people have searched for signatures of SOC everywhere. This paper will review how SOC behavior has become one way of interpreting the power-law behavior observed in natural occurring phenomenon in the Sun down to the Earth
Size-scaling limits of impulsive elastic energy release from a resilin-like elastomer
Elastically-driven motion has been used as a strategy to achieve high speeds
in small organisms and engineered micro-robotic devices. We examine the
size-scaling relations determining the limit of elastic energy release from
elastomer bands with mechanical properties similar to the biological protein
resilin. The maximum center-of-mass velocity of the elastomer bands was found
to be size-scale independent, while smaller bands demonstrated larger
accelerations and shorter durations of elastic energy release. Scaling
relationships determined from these measurements are consistent with the
performance of small organisms which utilize elastic elements to power motion.
Engineered devices found in the literature do not follow the same size-scaling
relationships, which suggests an opportunity for improved design of engineered
devices.Comment: 9 pages, 4 figure
Recommended from our members
Can Institutional Investors Bias Real Estate Portfolio Appraisals? Evidence from the Market Downturn
This paper investigates the extent to which institutional investors may have influenced independent real estate appraisals during the financial crisis. A conceptual model of the determinants of client influence on real estate appraisals is proposed. It is suggested that the extent of clients’ ability and willingness to bias appraisal outputs is contingent upon market and regulatory environments (ethical norms and legal and institutional frameworks), the salience of the appraisal(s) to the client, financial incentives for the appraiser to respond to client pressure, organisational culture, the level of moral reasoning of both individual clients and appraisers, client knowledge and the degree of appraisal uncertainty. The potential of client influence to bias ostensibly independent real estate appraisals is examined using the opportunity afforded by the market downturn commencing in 2007 in the UK. During the market turbulence at the end of 2007, the motivations of different types of owners to bias appraisals diverged clearly and temporarily provided a unique opportunity to assess potential appraisal bias. We use appraisal-based performance data for individual real estate assets to test whether there were significant ownership effects on performance during this period. The results support the hypothesis that real estate appraisals in this period reflected the differing needs of clients.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s10551-015-2953-
A theory-based approach to understanding condom errors and problems reported by men attending an STI clinic
The official published version can be accessed from the link below - Copyright @ 2008 Springer VerlagWe employed the information–motivation–behavioral skills (IMB) model to guide an investigation of correlates for correct condom use among 278 adult (18–35 years old) male clients attending a sexually transmitted infection (STI) clinic. An anonymous questionnaire aided by a CD-recording of the questions was administered. Linear Structural Relations Program was used to conduct path analyses of the hypothesized IMB model. Parameter estimates showed that while information did not directly affect behavioral skills, it did have a direct (negative) effect on condom use errors. Motivation had a significant direct (positive) effect on behavioral skills and a significant indirect (positive) effect on condom use errors through behavioral skills. Behavioral skills had a direct (negative) effect on condom use errors. Among men attending a public STI clinic, these findings suggest brief, clinic-based, safer sex programs for men who have sex with women should incorporate activities to convey correct condom use information, instill motivation to use condoms correctly, and directly enhance men’s behavioral skills for correct use of condoms
Universality in solar flare and earthquake occurrence
Earthquakes and solar flares are phenomena involving huge and rapid releases
of energy characterized by complex temporal occurrence. By analysing available
experimental catalogs, we show that the stochastic processes underlying these
apparently different phenomena have universal properties. Namely both problems
exhibit the same distributions of sizes, inter-occurrence times and the same
temporal clustering: we find afterflare sequences with power law temporal
correlations as the Omori law for seismic sequences. The observed universality
suggests a common approach to the interpretation of both phenomena in terms of
the same driving physical mechanism
Structure and evolution of the intracratonic Congo Basin
Surface wave tomography, heat flow, and crustal thickness measurements have demonstrated that the thickness of the continental lithosphere varies by at least a factor of 2. Since the thermal time constant of the lithosphere depends upon the square of its thickness, subsidence records of extensional sedimentary basins offer a potential way of extending these observations into the past. Here we examine the Congo basin, a large and iconic intracratonic sedimentary basin in Central Africa. This roughly circular basin covers an area in excess of 1.4 × 106 km2 with more than 5 km thickness of sedimentary rocks, the oldest parts of which are late Precambrian in age. First, we assess the thickness of the lithosphere. We have estimated its thickness across Africa using maps of shear wave velocity obtained by inversion of fundamental and higher-mode surface waveforms. The Congo Basin sits on 220 ± 30 km thick lithosphere and appears to be part of a southern core to the continent encompassing both Archean cratons and Proterozoic mobile belts. This thickness is consistent with published estimates from kimberlites. Reappraisal of legacy seismic reflection images demonstrates that the sedimentary section is underlain by a Late Precambrian rift zone and that the basin is still subsiding today. Subsidence modeling of two deep wells is consistent with uniform extension and cooling of the lithosphere by a factor of 1.2 during latest Precambrian and Cambrian time; we argue that the exceptional 0.55 Ga history of the basin is a direct consequence of the lithospheric thermal time constant being a factor of 4 longer than normal. Today, the basin coincides with a long-wavelength −30 to −40 mGal gravity anomaly. We interpret this gravity anomaly as the surficial manifestation of 400–600 m of recent mantle convective drawdown in response to the onset of upwelling plumes around the flanks of the southern African continent. The alternative explanation, that it is the static manifestation of locally thick lithosphere, is inconsistent with global trends of mantle density depletion. Our interpretation is consistent with fast seismic velocities observed throughout the sublithospheric upper mantle underneath the basin and recent geodynamic modeling
Diffusion entropy and waiting time statistics of hard x-ray solar flares
We analyze the waiting time distribution of time distances between two
nearest-neighbor flares. This analysis is based on the joint use of two
distinct techniques. The first is the direct evaluation of the distribution
function , or of the probability, , that no time
distance smaller than a given is found. We adopt the paradigm of the
inverse power law behavior, and we focus on the determination of the inverse
power index , without ruling out different asymptotic properties that
might be revealed, at larger scales, with the help of richer statistics. The
second technique, called Diffusion Entropy (DE) method, rests on the evaluation
of the entropy of the diffusion process generated by the time series. The
details of the diffusion process depend on three different walking rules, which
determine the form and the time duration of the transition to the scaling
regime, as well as the scaling parameter . With the first two rules the
information contained in the time series is transmitted, to a great extent, to
the transition, as well as to the scaling regime. The same information is
essentially conveyed, by using the third rules, into the scaling regime, which,
in fact, emerges very quickly after a fast transition process. We show that the
significant information hidden within the time series concerns memory induced
by the solar cycle, as well as the power index . The scaling parameter
becomes a simple function of , when memory is annihilated. Thus,
the three walking rules yield a unique and precise value of if the memory
is wisely taken under control, or cancelled by shuffling the data. All this
makes compelling the conclusion that .Comment: 23 pages, 13 figure
Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention
Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target
- …
