6,184 research outputs found
Orbitally-driven Behavior: Mott Transition, Quantum Oscillations and Colossal Magnetoresistance in Bilayered Ca3Ru2O7
We report recent transport and thermodynamic experiments over a wide range of
temperatures for the Mott-like system Ca3Ru2O7 at high magnetic fields, B, up
to 30 T. This work reveals a rich and highly anisotropic phase diagram, where
applying B along the a-, b-, and c-axis leads to vastly different behavior. A
fully spin-polarized state via a first order metamagnetic transition is
obtained for B||a, and colossal magnetoresistance is seen for B||b, and quantum
oscillations in the resistivity are observed for B||c, respectively. The
interplay of the lattice, orbital and spin degrees of freedom are believed to
give rise to this strongly anisotropic behavior.Comment: 26 pages and 8 figure
Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36
Kufor-Rakeb syndrome is an autosomal
recessive nigro-striatal-pallidal-pyramidal
neurodegeneration. The onset is in the
teenage years with clinical features of Parkinson’s
disease plus spasticity, supranuclear
upgaze paresis, and dementia. Brain
scans show atrophy of the globus pallidus
and pyramids and, later, widespread cerebral
atrophy. We report linkage in Kufor-
Rakeb syndrome to a 9 cM region of
chromosome 1p36 delineated by the markers
D1S436 and D1S2843, with a maximum
multipoint lod score of 3.6.
(J Med Genet 2001;38:680–682
Role of appetitive phenotype trajectory groups on child body weight during a family-based treatment for children with overweight or obesity.
ObjectiveEmerging evidence suggests that individual appetitive traits may usefully explain patterns of weight loss in behavioral weight loss treatments for children. The objective of this study was to identify trajectories of child appetitive traits and the impact on child weight changes over time.MethodsSecondary data analyses of a randomized noninferiority trial conducted between 2011 and 2015 evaluated children's appetitive traits and weight loss. Children with overweight and obesity (mean age = 10.4; mean BMI z = 2.0; 67% girls; 32% Hispanic) and their parent (mean age = 42.9; mean BMI = 31.9; 87% women; 31% Hispanic) participated in weight loss programs and completed assessments at baseline, 3, 6,12, and 24 months. Repeated assessments of child appetitive traits, including satiety responsiveness, food responsiveness and emotional eating, were used to identify parsimonious grouping of change trajectories. Linear mixed-effects models were used to identify the impact of group trajectory on child BMIz change over time.ResultsOne hundred fifty children and their parent enrolled in the study. The three-group trajectory model was the most parsimonious and included a high satiety responsive group (HighSR; 47.4%), a high food responsive group (HighFR; 34.6%), and a high emotional eating group (HighEE; 18.0%). Children in all trajectories lost weight at approximately the same rate during treatment, however, only the HighSR group maintained their weight loss during follow-ups, while the HighFR and HighEE groups regained weight (adjusted p-value < 0.05).ConclusionsDistinct trajectories of child appetitive traits were associated with differential weight loss maintenance. Identified high-risk subgroups may suggest opportunities for targeted intervention and maintenance programs
Phylogenetic relationships in Nuphar (Nymphaeaceae): Evidence from morphology, chloroplast DNA, and nuclear ribosomal DNA
The genus Nuphar consists of yellow-flowered waterlilies and is widely distributed in north-temperate bodies of water. Despite regular taxonomic evaluation of these plants, no explicit phylogenetic hypotheses have been proposed for the genus. We investigated phylogenetic relationships in Nuphar using morphology and sequences of the chloroplast gene matK and of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. Two major lineages within Nuphar are consistently resolved with the morphological and molecular data sets. One lineage comprises New World taxa and the other represents a primarily Old World lineage. Relationships within the major lineages were poorly resolved by morphology and ITS, yet certain relationships were elucidated by all analyses. Most notable is the strong support for a monophyletic lineage of dwarf taxa and the alliance of the North American N. microphylla with the Eurasian taxa. Minor discordance between the independent cladograms is accounted for by hybridization. The common taxonomic practice of uniting all North American and Eurasian taxa under one species is not supported phylogenetically
A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253.
BackgroundThe recently-identified causative agent of White-Nose Syndrome (WNS), Pseudogymnoascus destructans, has been responsible for the mortality of an estimated 5.5 million North American bats since its emergence in 2006. A primary focus of the National Response Plan, established by multiple state, federal and tribal agencies in 2011, was the identification of biological control options for WNS. In an effort to identify potential biological control options for WNS, multiply induced cells of Rhodococcus rhodochrous strain DAP96253 was screened for anti-P. destructans activity.ResultsConidia and mycelial plugs of P. destructans were exposed to induced R. rhodochrous in a closed air-space at 15°C, 7°C and 4°C and were evaluated for contact-independent inhibition of conidia germination and mycelial extension with positive results. Additionally, in situ application methods for induced R. rhodochrous, such as fixed-cell catalyst and fermentation cell-paste in non-growth conditions, were screened with positive results. R. rhodochrous was assayed for ex vivo activity via exposure to bat tissue explants inoculated with P. destructans conidia. Induced R. rhodochrous completely inhibited growth from conidia at 15°C and had a strong fungistatic effect at 4°C. Induced R. rhodochrous inhibited P. destructans growth from conidia when cultured in a shared air-space with bat tissue explants inoculated with P. destructans conidia.ConclusionThe identification of inducible biological agents with contact-independent anti- P. destructans activity is a major milestone in the development of viable biological control options for in situ application and provides the first example of contact-independent antagonism of this devastating wildlife pathogen
Observation of a subgap density of states in superconductor-normal metal bilayers in the Cooper limit
We present transport and tunneling measurements of Pb-Ag bilayers with
thicknesses, and , that are much less than the superconducting
coherence length. The transition temperature, , and energy gap, ,
in the tunneling Density of States (DOS) decrease exponentially with
at fixed . Simultaneously, a DOS that increases linearly from the Fermi
energy grows and fills nearly 40% of the gap as is 1/10 of of bulk
Pb. This behavior suggests that a growing fraction of quasiparticles decouple
from the superconductor as goes to 0. The linear dependence is consistent
with the quasiparticles becoming trapped on integrable trajectories in the
metal layer.Comment: 5 pages and 4 figures. This version is just the same as the old
version except that we try to cut the unnecessary white space in the figures
and make the whole paper look more compac
Charged State of a Spherical Plasma in Vacuum
The stationary state of a spherically symmetric plasma configuration is
investigated in the limit of immobile ions and weak collisions. Configurations
with small radii are positively charged as a significant fraction of the
electron population evaporates during the equilibration process, leaving behind
an electron distribution function with an energy cutoff. Such charged plasma
configurations are of interest for the study of Coulomb explosions and ion
acceleration from small clusters irradiated by ultraintense laser pulses and
for the investigation of ion bunches propagation in a plasma
Vibration effects on heat transfer in cryogenic systems Quarterly progress report, Jul. 1 - Sep. 30, 1967
Water test apparatus used to determine vibration effects on heat transfer in cryogenic system
Anderson localization vs. Mott-Hubbard metal-insulator transition in disordered, interacting lattice fermion systems
We review recent progress in our theoretical understanding of strongly
correlated fermion systems in the presence of disorder. Results were obtained
by the application of a powerful nonperturbative approach, the Dynamical
Mean-Field Theory (DMFT), to interacting disordered lattice fermions. In
particular, we demonstrate that DMFT combined with geometric averaging over
disorder can capture Anderson localization and Mott insulating phases on the
level of one-particle correlation functions. Results are presented for the
ground-state phase diagram of the Anderson-Hubbard model at half filling, both
in the paramagnetic phase and in the presence of antiferromagnetic order. We
find a new antiferromagnetic metal which is stabilized by disorder. Possible
realizations of these quantum phases with ultracold fermions in optical
lattices are discussed.Comment: 25 pages, 5 figures, typos corrected, references update
- …
