33 research outputs found
Non-Linear Elasticity of Extracellular Matrices Enables Contractile Cells to Communicate Local Position and Orientation
Most tissue cells grown in sparse cultures on linearly elastic substrates typically display a small, round phenotype on soft substrates and become increasingly spread as the modulus of the substrate increases until their spread area reaches a maximum value. As cell density increases, individual cells retain the same stiffness-dependent differences unless they are very close or in molecular contact. On nonlinear strain-stiffening fibrin gels, the same cell types become maximally spread even when the low strain elastic modulus would predict a round morphology, and cells are influenced by the presence of neighbors hundreds of microns away. Time lapse microscopy reveals that fibroblasts and human mesenchymal stem cells on fibrin deform the substrate by several microns up to five cell lengths away from their plasma membrane through a force limited mechanism. Atomic force microscopy and rheology confirm that these strains locally and globally stiffen the gel, depending on cell density, and this effect leads to long distance cell-cell communication and alignment. Thus cells are acutely responsive to the nonlinear elasticity of their substrates and can manipulate this rheological property to induce patterning
Oxidative stress-mediated induction of MMP-1 and MMP-3 in human RPE cells.
PURPOSE: In early exudative age-related macular degeneration (AMD), segmental thinning of Bruch's membrane is associated with ingrowth of choroidal neovascularization into the subretinal space. To determine whether there is a link between oxidative stress and extracellular matrix (ECM) degradation by the retinal pigment epithelium, the present study focused on the effect of oxidative stress on MMP-1 and MMP-3 expression, two enzymes with substrate specificity for components of Bruch's membrane. METHODS: Cultured human RPE cells were exposed to oxidative stress. To investigate the role of signal transduction proteins, cells were pretreated with the specific inhibitors SB202190 or PD98059. Secreted MMP-1 and MMP-3 were detected by ELISA, MMP-2, and MMP-9 by zymography. Expression of mRNA was determined by quantitative real-time RT-PCR. ECM degradation by retinal pigment epithelium was assessed by immunofluorescence microscopy. RESULTS: Oxidative stress increased MMP-1 and MMP-3 protein release but reduced MMP-2 activity. Real-time RT-PCR disclosed increases of MMP-1 and MMP-3 mRNA after oxidative stress with no modulation of TIMP-1. MMP-2 and MMP-9 mRNA was slightly enhanced. PD98059, an inhibitor of ERK1/2, markedly reduced MMP-1 expression, whereas SB202190, an inhibitor of p38 MAPK, was less effective. MMP-3 expression was attenuated by both inhibitors. Oxidative stress-stimulated type I collagen degradation by RPE cells was reduced by simultaneous treatment with a synthetic MMP-inhibitor or a neutralizing antibody against MMP-1. CONCLUSIONS: MMP-1 and MMP-3 in the retinal pigment epithelium are inducible by oxidative stress. The directional shift in the MMP-1,-3/TIMP-1 ratio is associated with increased type I collagen degradation. This may be an important mechanism contributing to the pathogenesis of early exudative AMD
Retinal pigment epithelium and age‐related macular degeneration: A review of major disease mechanisms
Galektin-1 und -3, neue Faktoren in der Pathogenese der proliferativen Vitreoretinopathie
An Evaluation of T‐Cell Functionality After Flow Cytometry Sorting Revealed p38 MAPK Activation
Prohibitin as the Molecular Binding Switch in the Retinal Pigment Epithelium
Previously, our study showed that prohibitin interacts with phospholipids, including phosphatidylinositide and cardiolipin. Under stress conditions, prohibitin interacts with cardiolipin as a retrograde response to activate mitochondrial proliferation. The lipid-binding switch mechanism of prohibitin with phosphatidylinositol-3,4,5-triphosphate (PIP3) and cardiolipin may suggest the role of prohibitin effects on energy metabolism and age-related diseases. The current study examined the region-specific expressions of prohibitin with respect to the retina and retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). A detailed understanding of prohibitin binding with lipids, nucleotides, and proteins shown in the current study may suggest how molecular interactions control apoptosis and how we can intervene against the apoptotic pathway in AMD. Our data imply that decreased prohibitin in the peripheral RPE is a significant step leading to mitochondrial dysfunction that may promote AMD progression
Proteomic profiling of human retinal pigment epithelium exposed to an advanced glycation-modified substrate
PURPOSE: The retinal pigment epithelium (RPE) and underlying Bruch’s membrane undergo significant modulation during ageing. Progressive, age-related modifications of lipids and proteins by advanced glycation end products (AGEs) at this cell–substrate interface have been implicated in RPE dysfunction and the progression to age-related macular degeneration (AMD). The pathogenic nature of these adducts in Bruch’s membrane and their influence on the overlying RPE remains unclear. This study aimed to identify alterations in RPE protein expression in cells exposed to AGE-modified basement membrane (AGE-BM), to determine how this “aged” substrate impacts RPE function and to map the localisation of identified proteins in ageing retina. METHODS: Confluent ARPE-19 monolayers were cultured on AGE-BM and native, non-modified BM (BM). Following 28-day incubation, the proteome was profiled using 2-dimensional gel electrophoresis (2D), densitometry and image analysis was employed to map proteins of interest that were identified by electrospray ionisation mass spectrometry (ESI MS/MS). Immunocytochemistry was employed to localise identified proteins in ARPE-19 monolayers cultured on unmodified and AGE-BM and to analyze aged human retina. RESULTS: Image analysis detected altered protein spot densities between treatment groups, and proteins of interest were identified by LC ESI MS/MS which included heat-shock proteins, cytoskeletal and metabolic regulators. Immunocytochemistry revealed deubiquitinating enzyme ubiquitin carboxyterminal hydrolase-1 (UCH-L1), which was upregulated in AGE-exposed RPE and was also localised to RPE in human retinal sections. CONCLUSIONS: This study has demonstrated that AGE-modification of basement membrane alters the RPE proteome. Many proteins are changed in this ageing model, including UCHL-1, which could impact upon RPE degradative capacity. Accumulation of AGEs at Bruch”s membrane could play a significant role in age-related dysfunction of the RPE
