3,121 research outputs found
Action plan co-optimization reveals the parallel encoding of competing reach movements.
Several influential cognitive theories propose that in situations affording more than one possible target of action, we prepare multiple competing movements before selecting one. Here we provide direct evidence for this provocative but largely untested idea and demonstrate why preparing multiple movements is computationally advantageous. Using a reaching task in which movements are initiated after one of two potential targets is cued, we show that the movement generated for the cued target borrows components of the movement that would have been required for the other, competing target. This interaction can only arise if multiple potential movements are fully specified in advance and we demonstrate that it reduces the time required to launch a given action plan. Our findings suggest that this co-optimization of motor plans is highly automatic and largely occurs outside conscious awareness.The study was supported by the Natural Sciences and Engineering Research Council of Canada; the Wellcome Trust; the Human Frontiers Science Program; and the Royal Society. J.P.G. was supported by Banting postdoctoral fellowship and CIHR postdoctoral fellowship awards.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms842
Velocity Correlations in Driven Two-Dimensional Granular Media
Simulations of volumetrically forced granular media in two dimensions produce
s tates with nearly homogeneous density. In these states, long-range velocity
correlations with a characteristic vortex structure develop; given sufficient
time, the correlations fill the entire simulated area. These velocity
correlations reduce the rate and violence of collisions, so that pressure is
smaller for driven inelastic particles than for undriven elastic particles in
the same thermodynamic state. As the simulation box size increases, the effects
of veloc ity correlations on the pressure are enhanced rather than reduced.Comment: 12 pages, 6 figures, 21 reference
Effectiveness of en masse versus two-step retraction:a systematic review and meta-analysis
Abstract Background This review aims to compare the effectiveness of en masse and two-step retraction methods during orthodontic space closure regarding anchorage preservation and anterior segment retraction and to assess their effect on the duration of treatment and root resorption. Methods An electronic search for potentially eligible randomized controlled trials and prospective controlled trials was performed in five electronic databases up to July 2017. The process of study selection, data extraction, and quality assessment was performed by two reviewers independently. A narrative review is presented in addition to a quantitative synthesis of the pooled results where possible. The Cochrane risk of bias tool and the Newcastle-Ottawa Scale were used for the methodological quality assessment of the included studies. Results Eight studies were included in the qualitative synthesis in this review. Four studies were included in the quantitative synthesis. En masse/miniscrew combination showed a statistically significant standard mean difference regarding anchorage preservation − 2.55 mm (95% CI − 2.99 to − 2.11) and the amount of upper incisor retraction − 0.38 mm (95% CI − 0.70 to − 0.06) when compared to a two-step/conventional anchorage combination. Qualitative synthesis suggested that en masse retraction requires less time than two-step retraction with no difference in the amount of root resorption. Conclusions Both en masse and two-step retraction methods are effective during the space closure phase. The en masse/miniscrew combination is superior to the two-step/conventional anchorage combination with regard to anchorage preservation and amount of retraction. Limited evidence suggests that anchorage reinforcement with a headgear produces similar results with both retraction methods. Limited evidence also suggests that en masse retraction may require less time and that no significant differences exist in the amount of root resorption between the two methods
The stellar halo of the Galaxy
Stellar halos may hold some of the best preserved fossils of the formation
history of galaxies. They are a natural product of the merging processes that
probably take place during the assembly of a galaxy, and hence may well be the
most ubiquitous component of galaxies, independently of their Hubble type. This
review focuses on our current understanding of the spatial structure, the
kinematics and chemistry of halo stars in the Milky Way. In recent years, we
have experienced a change in paradigm thanks to the discovery of large amounts
of substructure, especially in the outer halo. I discuss the implications of
the currently available observational constraints and fold them into several
possible formation scenarios. Unraveling the formation of the Galactic halo
will be possible in the near future through a combination of large wide field
photometric and spectroscopic surveys, and especially in the era of Gaia.Comment: 46 pages, 16 figures. References updated and some minor changes.
Full-resolution version available at
http://www.astro.rug.nl/~ahelmi/stellar-halo-review.pd
An example of ventilatory limitation during cardiopulmonary exercise testing in a patient with COPD.
A 64-year-old obese gentleman attended for further evaluation of ongoing dyspnoea in the context of a previous diagnosis of moderate COPD treated with dual long-acting bronchodilators. A cardiopulmonary exercise test (CPET) was performed, which demonstrated reduced peak work and oxygen consumption with evidence of dynamic hyperinflation, abnormal gas exchange and ventilatory limitation despite cardiac reserve. The CPET clarified the physiological process underpinning the patient's dyspnoea and limiting the patient's activities. This, in turn, helped the clinician tailor the patient's management plan
Search for Second-Generation Scalar Leptoquarks in Collisions at =1.96 TeV
Results on a search for pair production of second generation scalar
leptoquark in collisions at =1.96 TeV are reported. The
data analyzed were collected by the CDF detector during the 2002-2003 Tevatron
Run II and correspond to an integrated luminosity of 198 pb. Leptoquarks
(LQ) are sought through their decay into (charged) leptons and quarks, with
final state signatures represented by two muons and jets and one muon, large
transverse missing energy and jets. We observe no evidence for production
and derive 95% C.L. upper limits on the production cross sections as well
as lower limits on their mass as a function of , where is the
branching fraction for .Comment: 9 pages (3 author list) 5 figure
Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding
systems of heavy nuclei at 160 AGeV/ are analyzed within the microscopic
Quark Gluon String Model (QGSM). We found that even for the most heavy systems
particle emission takes place from the whole space-time domain available for
the system evolution, but not from the thin ''freeze-out hypersurface", adopted
in fluid dynamical models. Pions are continuously emitted from the whole volume
of the reaction and reflect the main trends of the system evolution. Nucleons
in Pb+Pb collisions initially come from the surface region. For both systems
there is a separation of the elastic and inelastic freeze-out. The mesons with
large transverse momenta, , are predominantly produced at the early stages
of the reaction. The low -component is populated by mesons coming mainly
from the decay of resonances. This explains naturally the decreasing source
sizes with increasing , observed in HBT interferometry. Comparison with
S+S and Au+Au systems at 11.6 AGeV/ is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the
Physical Review
Cluster Lenses
Clusters of galaxies are the most recently assembled, massive, bound
structures in the Universe. As predicted by General Relativity, given their
masses, clusters strongly deform space-time in their vicinity. Clusters act as
some of the most powerful gravitational lenses in the Universe. Light rays
traversing through clusters from distant sources are hence deflected, and the
resulting images of these distant objects therefore appear distorted and
magnified. Lensing by clusters occurs in two regimes, each with unique
observational signatures. The strong lensing regime is characterized by effects
readily seen by eye, namely, the production of giant arcs, multiple-images, and
arclets. The weak lensing regime is characterized by small deformations in the
shapes of background galaxies only detectable statistically. Cluster lenses
have been exploited successfully to address several important current questions
in cosmology: (i) the study of the lens(es) - understanding cluster mass
distributions and issues pertaining to cluster formation and evolution, as well
as constraining the nature of dark matter; (ii) the study of the lensed objects
- probing the properties of the background lensed galaxy population - which is
statistically at higher redshifts and of lower intrinsic luminosity thus
enabling the probing of galaxy formation at the earliest times right up to the
Dark Ages; and (iii) the study of the geometry of the Universe - as the
strength of lensing depends on the ratios of angular diameter distances between
the lens, source and observer, lens deflections are sensitive to the value of
cosmological parameters and offer a powerful geometric tool to probe Dark
Energy. In this review, we present the basics of cluster lensing and provide a
current status report of the field.Comment: About 120 pages - Published in Open Access at:
http://www.springerlink.com/content/j183018170485723/ . arXiv admin note:
text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
D25V apolipoprotein C-III variant causes dominant hereditary systemic amyloidosis and confers cardiovascular protective lipoprotein profile
Apolipoprotein C-III deficiency provides cardiovascular protection, but apolipoprotein C-III is not known to be associated with human amyloidosis. Here we report a form of amyloidosis characterized by renal insufficiency caused by a new apolipoprotein C-III variant, D25V. Despite their uremic state, the D25V-carriers exhibit low triglyceride (TG) and apolipoprotein C-III levels, and low very-low-density lipoprotein (VLDL)/high high-density lipoprotein (HDL) profile. Amyloid fibrils comprise the D25V-variant only, showing that wild-type apolipoprotein C-III does not contribute to amyloid deposition in vivo. The mutation profoundly impacts helical structure stability of D25V-variant, which is remarkably fibrillogenic under physiological conditions in vitro producing typical amyloid fibrils in its lipid-free form. D25V apolipoprotein C-III is a new human amyloidogenic protein and the first conferring cardioprotection even in the unfavourable context of renal failure, extending the evidence for an important cardiovascular protective role of apolipoprotein C-III deficiency. Thus, fibrate therapy, which reduces hepatic APOC3 transcription, may delay amyloid deposition in affected patients
- …
