37 research outputs found
The evolutionary drivers and correlates of viral host jumps
Most emerging and re-emerging infectious diseases stem from viruses that naturally circulate in non-human vertebrates. When these viruses cross over into humans, they can cause disease outbreaks, epidemics and pandemics. While zoonotic host jumps have been extensively studied from an ecological perspective, little attention has gone into characterizing the evolutionary drivers and correlates underlying these events. To address this gap, we harnessed the entirety of publicly available viral genomic data, employing a comprehensive suite of network and phylogenetic analyses to investigate the evolutionary mechanisms underpinning recent viral host jumps. Surprisingly, we find that humans are as much a source as a sink for viral spillover events, insofar as we infer more viral host jumps from humans to other animals than from animals to humans. Moreover, we demonstrate heightened evolution in viral lineages that involve putative host jumps. We further observe that the extent of adaptation associated with a host jump is lower for viruses with broader host ranges. Finally, we show that the genomic targets of natural selection associated with host jumps vary across different viral families, with either structural or auxiliary genes being the prime targets of selection. Collectively, our results illuminate some of the evolutionary drivers underlying viral host jumps that may contribute to mitigating viral threats across species boundaries
Transmission of SARS-CoV-2 from humans to animals and potential host adaptation
SARS-CoV-2, the causative agent of the COVID-19 pandemic, can infect a wide range of mammals. Since its spread in humans, secondary host jumps of SARS-CoV-2 from humans to multiple domestic and wild populations of mammals have been documented. Understanding the extent of adaptation to these animal hosts is critical for assessing the threat that the spillback of animal-adapted SARS-CoV-2 into humans poses. We compare the genomic landscapes of SARS-CoV-2 isolated from animal species to that in humans, profiling the mutational biases indicative of potentially different selective pressures in animals. We focus on viral genomes isolated from mink (Neovison vison) and white-tailed deer (Odocoileus virginianus) for which multiple independent outbreaks driven by onward animal-to-animal transmission have been reported. We identify five candidate mutations for animal-specific adaptation in mink (NSP9_G37E, Spike_F486L, Spike_N501T, Spike_Y453F, ORF3a_L219V), and one in deer (NSP3a_L1035F), though they appear to confer a minimal advantage for human-to-human transmission. No considerable changes to the mutation rate or evolutionary trajectory of SARS-CoV-2 has resulted from circulation in mink and deer thus far. Our findings suggest that minimal adaptation was required for onward transmission in mink and deer following human-to-animal spillover, highlighting the 'generalist' nature of SARS-CoV-2 as a mammalian pathogen
Detection of a reservoir of bedaquiline / clofazimine resistance associated variants in Mycobacterium tuberculosis predating the antibiotic era
Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent
inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is
threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline.
Clinical bedaquiline resistance is most frequently conferred by resistance-associated variants (RAVs)
in the Rv0678 gene which can also confer cross-resistance to clofazimine, another TB drug. We
compiled a dataset of 3,682 Mtb genomes, including 223 carrying Rv0678 bedaquiline RAVs. We
identified at least 15 cases where RAVs were present in the genomes of strains collected prior to the
use of bedaquiline in TB treatment regimes. Phylogenetic analyses point to multiple emergence events
and circulation of RAVs in Rv0678, often prior to the introduction of bedaquiline or clofazimine. We
also identify one case where the RAV Ile67fs is estimated to have emerged prior to the antibiotic era.
The presence of a pre-existing reservoir of bedaquiline-resistant Mtb strains augments the need for rapid
drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in
TB care and control
Detection of a historic reservoir of bedaquiline/clofazimine resistance-associated variants in Mycobacterium tuberculosis
BACKGROUND: Drug resistance in tuberculosis (TB) poses a major ongoing challenge to public health. The recent inclusion of bedaquiline into TB drug regimens has improved treatment outcomes, but this advance is threatened by the emergence of strains of Mycobacterium tuberculosis (Mtb) resistant to bedaquiline. Clinical bedaquiline resistance is most frequently conferred by off-target resistance-associated variants (RAVs) in the mmpR5 gene (Rv0678), the regulator of an efflux pump, which can also confer cross-resistance to clofazimine, another TB drug. METHODS: We compiled a dataset of 3682 Mtb genomes, including 180 carrying variants in mmpR5, and its immediate background (i.e. mmpR5 promoter and adjacent mmpL5 gene), that have been associated to borderline (henceforth intermediate) or confirmed resistance to bedaquiline. We characterised the occurrence of all nonsynonymous mutations in mmpR5 in this dataset and estimated, using time-resolved phylogenetic methods, the age of their emergence. RESULTS: We identified eight cases where RAVs were present in the genomes of strains collected prior to the use of bedaquiline in TB treatment regimes. Phylogenetic reconstruction points to multiple emergence events and circulation of RAVs in mmpR5, some estimated to predate the introduction of bedaquiline. However, epistatic interactions can complicate bedaquiline drug-susceptibility prediction from genetic sequence data. Indeed, in one clade, Ile67fs (a RAV when considered in isolation) was estimated to have emerged prior to the antibiotic era, together with a resistance reverting mmpL5 mutation. CONCLUSIONS: The presence of a pre-existing reservoir of Mtb strains carrying bedaquiline RAVs prior to its clinical use augments the need for rapid drug susceptibility testing and individualised regimen selection to safeguard the use of bedaquiline in TB care and control
Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential
There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance
Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever
Several bacterial pathogens have transitioned from tick-borne to louse-borne transmission, which often involves genome reduction and increasing virulence. However, the timing of such transitions remains unclear. We sequenced four ancient Borrelia recurrentis genomes, the agent of louse-borne relapsing fever, dating from 2300 to 600 years ago. We estimated the divergence from its closest tick-borne relative to 6000 to 4000 years ago, which suggests an emergence coinciding with human lifestyle changes such as the advent of wool-based textiles. Pan-genome analysis indicated that much of the evolution characteristic of B. recurrentis had occurred by ~2300 years ago, though further gene turnover, particularly in plasmid partitioning, persisted until ~1000 years ago. Our findings provide a direct genomic chronology of the evolution of this specialized vector-borne pathogen
Bird community in a forest patch isolated by the urban matrix at the Sinos River basin, Rio Grande do Sul state, Brazil, with comments on the possible local defaunation
Transgenesis in Animal Agriculture: Addressing Animal Health and Welfare Concerns
The US Food and Drug Administration’s final Guidance for Industry on the regulation of transgenesis in animal agriculture has paved the way for the commercialization of genetically engineered (GE) farm animals. The production-related diseases associated with extant breeding technologies are reviewed, as well as the predictable welfare consequences of continued emphasis on prolificacy at the potential expense of physical fitness. Areas in which biotechnology could be used to improve the welfare of animals while maintaining profitability are explored along with regulatory schema to improve agency integration in GE animal oversight
No evidence for increased transmissibility from recurrent mutations in SARS-CoV-2
AbstractThe COVID-19 pandemic is caused by the coronavirus SARS-CoV-2, which jumped into the human population in late 2019 from a currently uncharacterised animal reservoir. Due to this extremely recent association with humans, SARS-CoV-2 may not yet be fully adapted to its human host. This has led to speculations that some lineages of SARS-CoV-2 may be evolving towards higher transmissibility. The most plausible candidate mutations under putative natural selection are those which have emerged repeatedly and independently (homoplasies). Here, we formally test whether any of the recurrent mutations that have been observed in SARS-CoV-2 are significantly associated with increased viral transmission. To do so, we develop a phylogenetic index to quantify the relative number of descendants in sister clades with and without a specific allele. We apply this index to a carefully curated set of recurrent mutations identified within a dataset of 46,723 SARS-CoV-2 genomes isolated from patients worldwide. We do not identify a single recurrent mutation in this set convincingly associated with increased viral transmission. Instead, recurrent SARS-CoV-2 mutations currently in circulation appear to be evolutionary neutral. Recurrent mutations also seem primarily induced by the human immune system via host RNA editing, rather than being signatures of adaptation to the novel human host. In conclusion, we find no evidence at this stage for the emergence of significantly more transmissible lineages of SARS-CoV-2 due to recurrent mutations.</jats:p
