168 research outputs found
The total synthesis of (-)-cyanthiwigin F by means of double catalytic enantioselective alkylation
Double catalytic enantioselective transformations are powerful synthetic methods that can facilitate the construction of stereochemically complex molecules in a single operation. In addition to generating two or more stereocentres in a single reaction, multiple asymmetric reactions also impart increased enantiomeric excess to the final product in comparison with the analogous single transformation. Furthermore, multiple asymmetric operations have the potential to independently construct several stereocentres at remote points within the same molecular scaffold, rather than relying on pre-existing chiral centres that are proximal to the reactive site. Despite the inherent benefits of multiple catalytic enantioselective reactions, their application to natural product total synthesis remains largely underutilized. Here we report the use of a double stereoablative enantioselective alkylation reaction in a concise synthesis of the marine diterpenoid (-)-cyanthiwigin F (ref. 8). By employing a technique for independent, selective formation of two stereocentres in a single stereoconvergent operation, we demonstrate that a complicated mixture of racemic and meso diastereomers may be smoothly converted to a synthetically useful intermediate with exceptional enantiomeric excess. The stereochemical information generated by means of this catalytic transformation facilitates the easy and rapid completion of the total synthesis of this marine natural product
Quantitative imaging of concentrated suspensions under flow
We review recent advances in imaging the flow of concentrated suspensions,
focussing on the use of confocal microscopy to obtain time-resolved information
on the single-particle level in these systems. After motivating the need for
quantitative (confocal) imaging in suspension rheology, we briefly describe the
particles, sample environments, microscopy tools and analysis algorithms needed
to perform this kind of experiments. The second part of the review focusses on
microscopic aspects of the flow of concentrated model hard-sphere-like
suspensions, and the relation to non-linear rheological phenomena such as
yielding, shear localization, wall slip and shear-induced ordering. Both
Brownian and non-Brownian systems will be described. We show how quantitative
imaging can improve our understanding of the connection between microscopic
dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of
methodology. Submitted for special volume 'High Solid Dispersions' ed. M.
Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009);
22 pages, 16 fig
The Dynamical Structure and Evolution of Giant Molecular Clouds
Giant molecular clouds (GMCs) are the sites of star formation in the Galaxy. Many of their properties can be understood in terms of a model in which the GMCs and the star-forming clumps within them are in approximate pressure equilibrium, with turbulent motions treated as a separate pressure component
Acoustic Cues for Sound Source Distance and Azimuth in Rabbits, a Racquetball and a Rigid Spherical Model
There are numerous studies measuring the transfer functions representing signal transformation between a source and each ear canal, i.e., the head-related transfer functions (HRTFs), for various species. However, only a handful of these address the effects of sound source distance on HRTFs. This is the first study of HRTFs in the rabbit where the emphasis is on the effects of sound source distance and azimuth on HRTFs. With the rabbit placed in an anechoic chamber, we made acoustic measurements with miniature microphones placed deep in each ear canal to a sound source at different positions (10–160 cm distance, ±150° azimuth). The sound was a logarithmically swept broadband chirp. For comparisons, we also obtained the HRTFs from a racquetball and a computational model for a rigid sphere. We found that (1) the spectral shape of the HRTF in each ear changed with sound source location; (2) interaural level difference (ILD) increased with decreasing distance and with increasing frequency. Furthermore, ILDs can be substantial even at low frequencies when distance is close; and (3) interaural time difference (ITD) decreased with decreasing distance and generally increased with decreasing frequency. The observations in the rabbit were reproduced, in general, by those in the racquetball, albeit greater in magnitude in the rabbit. In the sphere model, the results were partly similar and partly different than those in the racquetball and the rabbit. These findings refute the common notions that ILD is negligible at low frequencies and that ITD is constant across frequency. These misconceptions became evident when distance-dependent changes were examined
Production of transgenic goat (Capra hircus) with human Granulocyte Colony Stimulating Factor (hG-CSF) gene in Brazil
The impact of single and pairwise Toll-like receptor activation on neuroinflammation and neurodegeneration
Background Toll-like receptors (TLRs) enable innate immune cells to respond to
pathogen- and host-derived molecules. The central nervous system (CNS)
exhibits most of the TLRs identified with predominant expression in microglia,
the major immune cells of the brain. Although individual TLRs have been shown
to contribute to CNS disorders, the consequences of multiple activated TLRs on
the brain are unclear. We therefore systematically investigated and compared
the impact of sole and pairwise TLR activation on CNS inflammation and injury.
Methods Selected TLRs expressed in microglia and neurons were stimulated with
their specific TLR ligands in varying combinations. Cell cultures were then
analyzed by immunocytochemistry, FlowCytomix, and ELISA. To determine neuronal
injury and neuroinflammation in vivo, C57BL/6J mice were injected
intrathecally with TLR agonists. Subsequently, brain sections were analyzed by
quantitative real-time PCR and immunohistochemistry. Results Simultaneous
stimulation of TLR4 plus TLR2, TLR4 plus TLR9, and TLR2 plus TLR9 in microglia
by their respective specific ligands results in an increased inflammatory
response compared to activation of the respective single TLR in vitro. In
contrast, additional activation of TLR7 suppresses the inflammatory response
mediated by the respective ligands for TLR2, TLR4, or TLR9 up to 24 h,
indicating that specific combinations of activated TLRs individually modulate
the inflammatory response. Accordingly, the composition of the inflammatory
response pattern generated by microglia varies depending on the identity and
combination of the activated TLRs engaged. Likewise, neuronal injury occurs in
response to activation of only selected TLRs and TLR combinations in vitro.
Activation of TLR2, TLR4, TLR7, and TLR9 in the brain by intrathecal injection
of the respective TLR ligand into C57BL/6J mice leads to specific expression
patterns of distinct TLR mRNAs in the brain and causes influx of leukocytes
and inflammatory mediators into the cerebrospinal fluid to a variable extent.
Also, the intensity of the inflammatory response and neurodegenerative effects
differs according to the respective activated TLR and TLR combinations used in
vivo. Conclusions Sole and pairwise activation of TLRs modifies the pattern
and extent of inflammation and neurodegeneration in the CNS, thereby enabling
innate immunity to take account of the CNS diseases’ diversity
International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis.
BACKGROUND: Critical examination of the quality and validity of available allergic rhinitis (AR) literature is necessary to improve understanding and to appropriately translate this knowledge to clinical care of the AR patient. To evaluate the existing AR literature, international multidisciplinary experts with an interest in AR have produced the International Consensus statement on Allergy and Rhinology: Allergic Rhinitis (ICAR:AR). METHODS: Using previously described methodology, specific topics were developed relating to AR. Each topic was assigned a literature review, evidence-based review (EBR), or evidence-based review with recommendations (EBRR) format as dictated by available evidence and purpose within the ICAR:AR document. Following iterative reviews of each topic, the ICAR:AR document was synthesized and reviewed by all authors for consensus. RESULTS: The ICAR:AR document addresses over 100 individual topics related to AR, including diagnosis, pathophysiology, epidemiology, disease burden, risk factors for the development of AR, allergy testing modalities, treatment, and other conditions/comorbidities associated with AR. CONCLUSION: This critical review of the AR literature has identified several strengths; providers can be confident that treatment decisions are supported by rigorous studies. However, there are also substantial gaps in the AR literature. These knowledge gaps should be viewed as opportunities for improvement, as often the things that we teach and the medicine that we practice are not based on the best quality evidence. This document aims to highlight the strengths and weaknesses of the AR literature to identify areas for future AR research and improved understanding
Drosophila Ribosomal Protein Mutants Control Tissue Growth Non-Autonomously via Effects on the Prothoracic Gland and Ecdysone
The ribosome is critical for all aspects of cell growth due to its essential role in protein synthesis. Paradoxically, many Ribosomal proteins (Rps) act as tumour suppressors in Drosophila and vertebrates. To examine how reductions in Rps could lead to tissue overgrowth, we took advantage of the observation that an RpS6 mutant dominantly suppresses the small rough eye phenotype in a cyclin E hypomorphic mutant (cycEJP). We demonstrated that the suppression of cycEJP by the RpS6 mutant is not a consequence of restoring CycE protein levels or activity in the eye imaginal tissue. Rather, the use of UAS-RpS6 RNAi transgenics revealed that the suppression of cycEJP is exerted via a mechanism extrinsic to the eye, whereby reduced Rp levels in the prothoracic gland decreases the activity of ecdysone, the steroid hormone, delaying developmental timing and hence allowing time for tissue and organ overgrowth. These data provide for the first time a rationale to explain the counter-intuitive organ overgrowth phenotypes observed for certain members of the Minute class of Drosophila Rp mutants. They also demonstrate how Rp mutants can affect growth and development cell non-autonomously
Lymphocyte recruitment and homing to the liver in primary biliary cirrhosis and primary sclerosing cholangitis
The mechanisms operating in lymphocyte recruitment and homing to liver are reviewed. A literature review was performed on primary biliary cirrhosis (PBC), progressive sclerosing cholangitis (PSC), and homing mechanisms; a total of 130 papers were selected for discussion. Available data suggest that in addition to a specific role for CCL25 in PSC, the CC chemokines CCL21 and CCL28 and the CXC chemokines CXCL9 and CXCL10 are involved in the recruitment of T lymphocytes into the portal tract in PBC and PSC. Once entering the liver, lymphocytes localize to bile duct and retain by the combinatorial or sequential action of CXCL12, CXCL16, CX3CL1, and CCL28 and possibly CXCL9 and CXCL10. The relative importance of these chemokines in the recruitment or the retention of lymphocytes around the bile ducts remains unclear. The available data remain limited but underscore the importance of recruitment and homing
- …
