3,630 research outputs found
Enumeration of distinct mechanically stable disk packings in small systems
We create mechanically stable (MS) packings of bidisperse disks using an
algorithm in which we successively grow or shrink soft repulsive disks followed
by energy minimization until the overlaps are vanishingly small. We focus on
small systems because this enables us to enumerate nearly all distinct MS
packings. We measure the probability to obtain a MS packing at packing fraction
and find several notable results. First, the probability is highly
nonuniform. When averaged over narrow packing fraction intervals, the most
probable MS packing occurs at the highest and the probability decays
exponentially with decreasing . Even more striking, within each
packing-fraction interval, the probability can vary by many orders of
magnitude. By using two different packing-generation protocols, we show that
these results are robust and the packing frequencies do not change
qualitatively with different protocols.Comment: 4 pages, 3 figures, Conference Proceedings for X International
Workshop on Disordered System
Is the biology of breast cancer changing? A study of hormone receptor status 1984-1986 and 1996-1997
Using archived tumours, those from 1984-1986 and 1996-1997 underwent immunohistochemistry for hormone receptors and grade analysis. A significant shift towards more ER-positive and low-grade disease was found; this appears to reflect screening practices, but could still influence survival
Health of community nurses: a case for workplace wellness schemes
Community nursing is associated with stress and burnout, which can impact heavily on the individual and the NHS both economically and on the quality of patient care. Recent Government publications have called for an increase in workplace health schemes, with the public sector ‘leading by example’. As the largest employer in Europe, the NHS is well placed to develop workplace wellness schemes to address the health needs of staff and to indirectly influence primary prevention among patients. Lessons from an innovative employee wellness programme in an NHS hospital setting demonstrates that such schemes may positively alter individual health and attitudes towards the employer. There is scope for development of such schemes to improve health and well-being in community nurses
Which doctors and with what problems contact a specialist service for doctors? A cross sectional investigation
Background:
In the United Kingdom, specialist treatment and intervention services for doctors are underdeveloped. The MedNet programme, created in 1997 and funded by the London Deanery, aims to fill this gap by providing a self-referral, face-to-face, psychotherapeutic assessment service for doctors in London and South-East England. MedNet was designed to be a low-threshold service, targeting doctors without formal psychiatric problems. The aim of this study was to delineate the characteristics of doctors utilising the service, to describe their psychological morbidity, and to determine if early intervention is achieved.
Methods:
A cross-sectional study including all consecutive self-referred doctors (n = 121, 50% male) presenting in 2002–2004 was conducted. Measures included standardised and bespoke questionnaires both self-report and clinician completed. The multi-dimensional evaluation included: demographics, CORE (CORE-OM, CORE-Workplace and CORE-A) an instrument designed to evaluate the psychological difficulties of patients referred to outpatient services, Brief Symptom Inventory to quantify caseness and formal psychiatric illness, and Maslach Burnout Inventory.
Results:
The most prevalent presenting problems included depression, anxiety, interpersonal, self-esteem and work-related issues. However, only 9% of the cohort were identified as severely distressed psychiatrically using this measure. In approximately 50% of the sample, problems first presented in the preceding year. About 25% were on sick leave at the time of consultation, while 50% took little or no leave in the prior 12 months. A total of 42% were considered to be at some risk of suicide, with more than 25% considered to have a moderate to severe risk. There were no significant gender differences in type of morbidity, severity or days off sick.
Conclusion:
Doctors displayed high levels of distress as reflected in the significant proportion of those who were at some risk of suicide; however, low rates of severe psychiatric illness were detected. These findings suggest that MedNet clients represent both ends of the spectrum of severity, enabling early clinical engagement for a significant proportion of cases that is of importance both in terms of personal health and protecting patient care, and providing a timely intervention for those who are at risk, a group for whom rapid intervention services are in need and an area that requires further investigation in the UK
MultiMetEval: comparative and multi-objective analysis of genome-scale metabolic models
Comparative metabolic modelling is emerging as a novel field, supported by the development of reliable and standardized approaches for constructing genome-scale metabolic models in high throughput. New software solutions are needed to allow efficient comparative analysis of multiple models in the context of multiple cellular objectives. Here, we present the user-friendly software framework Multi-Metabolic Evaluator (MultiMetEval), built upon SurreyFBA, which allows the user to compose collections of metabolic models that together can be subjected to flux balance analysis. Additionally, MultiMetEval implements functionalities for multi-objective analysis by calculating the Pareto front between two cellular objectives. Using a previously generated dataset of 38 actinobacterial genome-scale metabolic models, we show how these approaches can lead to exciting novel insights. Firstly, after incorporating several pathways for the biosynthesis of natural products into each of these models, comparative flux balance analysis predicted that species like Streptomyces that harbour the highest diversity of secondary metabolite biosynthetic gene clusters in their genomes do not necessarily have the metabolic network topology most suitable for compound overproduction. Secondly, multi-objective analysis of biomass production and natural product biosynthesis in these actinobacteria shows that the well-studied occurrence of discrete metabolic switches during the change of cellular objectives is inherent to their metabolic network architecture. Comparative and multi-objective modelling can lead to insights that could not be obtained by normal flux balance analyses. MultiMetEval provides a powerful platform that makes these analyses straightforward for biologists. Sources and binaries of MultiMetEval are freely available from https://github.com/PiotrZakrzewski/MetEval/downloads
Maternal corticotropin-releasing hormone is associated with LEP DNA methylation at birth and in childhood: an epigenome-wide study in Project Viva
BackgroundCorticotropin-releasing hormone (CRH) plays a central role in regulating the secretion of cortisol which controls a wide range of biological processes. Fetuses overexposed to cortisol have increased risks of disease in later life. DNA methylation may be the underlying association between prenatal cortisol exposure and health effects. We investigated associations between maternal CRH levels and epigenome-wide DNA methylation of cord blood in offsprings and evaluated whether these associations persisted into mid-childhood.MethodsWe investigated mother-child pairs enrolled in the prospective Project Viva pre-birth cohort. We measured DNA methylation in 257 umbilical cord blood samples using the HumanMethylation450 Bead Chip. We tested associations of maternal CRH concentration with cord blood cells DNA methylation, adjusting the model for maternal age at enrollment, education, maternal race/ethnicity, maternal smoking status, pre-pregnancy body mass index, parity, gestational age at delivery, child sex, and cell-type composition in cord blood. We further examined the persistence of associations between maternal CRH levels and DNA methylation in children's blood cells collected at mid-childhood (n = 239, age: 6.7-10.3 years) additionally adjusting for the children's age at blood drawn.ResultsMaternal CRH levels are associated with DNA methylation variability in cord blood cells at 96 individual CpG sites (False Discovery Rate <0.05). Among the 96 CpG sites, we identified 3 CpGs located near the LEP gene. Regional analyses confirmed the association between maternal CRH and DNA methylation near LEP. Moreover, higher maternal CRH levels were associated with higher blood-cell DNA methylation of the promoter region of LEP in mid-childhood (P < 0.05, β = 0.64, SE = 0.30).ConclusionIn our cohort, maternal CRH was associated with DNA methylation levels in newborns at multiple loci, notably in the LEP gene promoter. The association between maternal CRH and LEP DNA methylation levels persisted into mid-childhood
Interprofessional communication with hospitalist and consultant physicians in general internal medicine : a qualitative study
This study helps to improve our understanding of the collaborative environment in GIM, comparing the communication styles and strategies of hospitalist and consultant physicians, as well as the experiences of providers working with them. The implications of this research are globally important for understanding how to create opportunities for physicians and their colleagues to meaningfully and consistently participate in interprofessional communication which has been shown to improve patient, provider, and organizational outcomes
Alpha-particle-induced complex chromosome exchanges transmitted through extra-thymic lymphopoiesis in vitro show evidence of emerging genomic instability
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure.This work was supported by the Department of Health, UK. Contract RRX95 (RMA NSDTG)
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle
Background
Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals.
Results
Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle.
Conclusions
This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought
- …
