6 research outputs found

    Ultrafast and high-throughput mass spectrometric assay for therapeutic drug monitoring of antiretroviral drugs in pediatric HIV-1 infection applying dried blood spots

    Get PDF
    Kaletra® (Abott Laboratories) is a co-formulated medication used in the treatment of HIV-1-infected children, and it contains the two antiretroviral protease inhibitor drugs lopinavir and ritonavir. We validated two new ultrafast and high-throughput mass spectrometric assays to be used for therapeutic drug monitoring of lopinavir and ritonavir concentrations in whole blood and in plasma from HIV-1-infected children. Whole blood was blotted onto dried blood spot (DBS) collecting cards, and plasma was collected simultaneously. DBS collecting cards were extracted by an acetonitrile/water mixture while plasma samples were deproteinized with acetone. Drug concentrations were determined by matrix-assisted laser desorption/ionization-triple quadrupole tandem mass spectrometry (MALDI-QqQ-MS/MS). The application of DBS made it possible to measure lopinavir and ritonavir in whole blood in therapeutically relevant concentrations. The MALDI-QqQ-MS/MS plasma assay was successfully cross-validated with a commonly used high-performance liquid chromatography (HPLC)–ultraviolet (UV) assay for the therapeutic drug monitoring (TDM) of HIV-1-infected patients, and it showed comparable performance characteristics. Observed DBS concentrations showed as well, a good correlation between plasma concentrations obtained by MALDI-QqQ-MS/MS and those obtained by the HPLC-UV assay. Application of DBS for TDM proved to be a good alternative to the normally used plasma screening. Moreover, collection of DBS requires small amounts of whole blood which can be easily performed especially in (very) young children where collection of large whole blood amounts is often not possible. DBS is perfectly suited for TDM of HIV-1-infected children; but nevertheless, DBS can also easily be applied for TDM of patients in areas with limited or no laboratory facilities

    Effect of ritonavir on the pharmacokinetics of the benzimidazoles albendazole and mebendazole: an interaction study in healthy volunteers

    Full text link
    BACKGROUND: Benzimidazoles are often used concomitantly with protease inhibitors in patients with helminthic disease and HIV infection. Low bioavailability and extensive first-pass metabolism make benzimidazoles prone to pharmacokinetic drug interactions. The aim of the present study was to investigate potential drug interactions between the benzimidazoles albendazole and mebendazole and the potent CYP3A4 inhibitor ritonavir. METHODS: Sixteen healthy volunteers were administered a single oral dose of 1,000 mg mebendazole or 400 mg albendazole (2 x n = 8). AUC, C(max), and t(1/2) of mebendazole, albendazole, and albendazole sulfoxide were studied in absence and after short-term (2 doses) and long-term (8 days) treatment with ritonavir 200 mg bid. RESULTS: Pharmacokinetic parameters of albendazole and mebendazole were not changed by short-term administration of ritonavir. However, long-term administration of ritonavir resulted in significant changes in albendazole and mebendazole disposition, with a significant decrease in AUC(0-24) (27 and 43% of baseline for albendazole and mebendazole, respectively) and C(max) (26 and 41% of baseline, respectively). CONCLUSION: The AUC(0-24) of benzimidazoles decreased after long-term use of ritonavir, while no changes in pharmacokinetic profiles were observed under short-term administration. These findings might help to optimize benzimidazole efficacy when used in combination with protease inhibitors

    Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion

    No full text

    Dexamethasone Intravitreal Implant in Patients with Macular Edema Related to Branch or Central Retinal Vein Occlusion

    No full text
    corecore