350 research outputs found
Recommended from our members
Tidal interactions of close hot subdwarf binaries
Over half of all observed hot subdwarf B (sdB) stars are found in binaries, and over half of these are found in close configurations with orbital periods of 10 d or less. In order to estimate the companion masses in these predominantly single-lined systems, tidal locking has frequently been assumed for sdB binaries with periods less than half a day. Observed non-synchronicity of a number of close sdB binaries challenges that assumption and hence provides an ideal testbed for tidal theory. We solve the second-order differential equations for detailed 1D stellar models of sdB stars to obtain the tidal dissipation strength and hence to estimate the tidal synchronization time-scale owing to Zahn's dynamical tide. The results indicate synchronization time-scales longer than the sdB lifetime in all observed cases. Further, we examine the roles of convective overshooting and convective dissipation in the core of sdB stars and find no theoretical framework in which tidally induced synchronization should occur
The international effort: building the bridge for Translational Medicine: Report of the 1st International Conference of Translational Medicine (ICTM)
Background: Supported by the International Society for Translational Medicine (ISTM), Wenzhou Medical College and the First Affiliated Hospital of Wenzhou Medical College, the International Conference on Translational Medicine (ICTM) was held on October 22–23, 2011 in Wenzhou, China. Nearly 800 registrants attended the meeting, primarily representing institutes and hospitals in Europe, The United States of America, And Asia, and China. The meeting was chaired and organized by Dr. Xiangdong Wang, Xiaoming Chen, Richard Coico, Jeffrey M. Drazen, Richard Horton, Francesco M. Marincola, Laurentiu M. Popescu, Jia Qu and Aamir Shahzad. Findings: The meeting focused on the communication of the need to foster translational medicine (TM) by building and broadening bridges between basic research and clinical studies at the international level. The meeting included distinguished TM experts from academia, the pharmaceutical and diagnostics industries, government agencies, regulators, and clinicians and provided the opportunity to identify shared interests and efforts for collaborative approaches utilizing cutting edge technologies, innovative approaches and novel therapeutic interventions. The meeting defined the concept of TM in its two-way operational scheme and emphasized the need for bed to bench efforts based directly on clinical observation. Conclusions: It was the meeting participants’ realization that the shared main goals of TM include breaking the separation between clinic practice and basic research, establishing positive feedback by understanding the basis of expected and unexpected clinical outcomes and accelerating basic research relevant to human suffering. The primary objectives of the meeting were two-fold: to accelerate the two-way translation by informing the participants representing the different disciplines about the state of art activities around TM approaches; and to identify areas that need to be supported by redirecting limited resources as well as identifying new sources of funding. This report summarizes key concepts presented during the meeting representing the state-of-art translational research and salient aspects of the ensuing discussions
The Influence of Mirror-Visual Feedback on Training-Induced Motor Performance Gains in the Untrained Hand
The well-documented observation of bilateral performance gains following unilateral motor training, a phenomenon known as cross-limb transfer, has important implications for rehabilitation. It has recently been shown that provision of a mirror image of the active hand during unilateral motor training has the capacity to enhance the efficacy of this phenomenon when compared to training without augmented visual feedback (i.e., watching the passive hand), possibly via action observation effects [1]. The current experiment was designed to confirm whether mirror-visual feedback (MVF) during motor training can indeed elicit greater performance gains in the untrained hand compared to more standard visual feedback (i.e., watching the active hand). Furthermore, discussing the mechanisms underlying any such MVF-induced behavioural effects, we suggest that action observation and the cross-activation hypothesis may both play important roles in eliciting cross-limb transfer. Eighty participants practiced a fast-as-possible two-ball rotation task with their dominant hand. During training, three different groups were provided with concurrent visual feedback of the active hand, inactive hand or a mirror image of the active hand with a fourth control group receiving no training. Pre- and post-training performance was measured in both hands. MVF did not increase the extent of training-induced performance changes in the untrained hand following unilateral training above and beyond those observed for other types of feedback. The data are consistent with the notion that cross-limb transfer, when combined with MVF, is mediated by cross-activation with action observation playing a less unique role than previously suggested. Further research is needed to replicate the current and previous studies to determine the clinical relevance and potential benefits of MVF for cases that, due to the severity of impairment, rely on unilateral training programmes of the unaffected limb to drive changes in the contralateral affected limb
Recommended from our members
Diffusion in hot subdwarf progenitors from the common envelope channel
© 2017 C. M. Byrne et al. Diffusion of elements in the atmosphere of a star can drastically affect its surface composition, sometimes leading to unusual mixtures. These chemically peculiar stars can be identified from the presence of unusual lines in their spectra. Some hot subdwarf stars show extraordinary abundances of elements such as lead, zirconium and strontium, while the abundance of helium ranges from practically zero to almost 100 percent across the hot subdwarf population. A sequence of extreme horizontal branch star models was generated by producing a number of post-common envelope objects from red giants. The evolution of these subdwarf progenitors was computed with the MESA stellar evolution code from immediately after envelope ejection right up to the ignition of helium in the core. Envelope abundances were calculated at the zero age horizontal branch for models both with and without the presence of diffusion. A small number of simulations also looked at the effects on radiative levitation of these abundances, to test how well diffusion physics is able to reproduce observational data
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation
Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations
Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye
Background: Saccharomyces cerevisiae multicellular communities are sustained by a scaffolding extracellular matrix, which provides spatial organization, and nutrient and water availability, and ensures group survival. According to this tissue-like biology, the yeast extracellular matrix (yECM) is analogous to the higher Eukaryotes counterpart for its polysaccharide and proteinaceous nature. Few works focused on yeast biofilms, identifying the flocculin Flo11 and several members of the HSP70 in the extracellular space. Molecular composition of the yECM, is therefore mostly unknown. The homologue of yeast Gup1 protein in high Eukaryotes (HHATL) acts as a regulator of Hedgehog signal secretion, therefore interfering in morphogenesis and cell-cell communication through the ECM, which mediates but is also regulated by this signalling pathway. In yeast, the deletion of GUP1 was associated with a vast number of diverse phenotypes including the cellular differentiation that accompanies biofilm formation.
Methods: S. cerevisiae W303-1A wt strain and gup1Δ mutant were used as previously described to generate biofilmlike mats in YPDa from which the yECM proteome was extracted. The proteome from extracellular medium from batch liquid growing cultures was used as control for yECM-only secreted proteins. Proteins were separated by SDS-PAGE and 2DE. Identification was performed by HPLC, LC-MS/MS and MALDI-TOF/TOF. The protein expression comparison between the two strains was done by DIGE, and analysed by DeCyder Extended Data Analysis that included Principal Component Analysis and Hierarchical Cluster Analysis.
Results: The proteome of S. cerevisiae yECM from biofilm-like mats was purified and analysed by Nano LC-MS/MS, 2D Difference Gel Electrophoresis (DIGE), and MALDI-TOF/TOF. Two strains were compared, wild type and the mutant defective in GUP1. As controls for the identification of the yECM-only proteins, the proteome from liquid batch cultures was also identified. Proteins were grouped into distinct functional classes, mostly Metabolism, Protein Fate/Remodelling and Cell Rescue and Defence mechanisms, standing out the presence of heat shock chaperones, metalloproteinases, broad signalling cross-talkers and other putative signalling proteins. The data has been deposited to the ProteomeXchange with identifier PXD001133.Conclusions: yECM, as the mammalian counterpart, emerges as highly proteinaceous. As in higher Eukaryotes ECM, numerous proteins that could allow dynamic remodelling, and signalling events to occur in/and via yECM were identified. Importantly, large sets of enzymes encompassing full antagonistic metabolic pathways, suggest that mats develop into two metabolically distinct populations, suggesting that either extensive moonlighting or actual metabolism occurs extracellularly. The gup1Δ showed abnormally loose ECM texture. Accordingly, the correspondent differences in proteome unveiled acetic and citric acid producing enzymes as putative players in structural integrity maintenance.This work was funded by the Marie Curie Initial Training Network
GLYCOPHARM (PITN-GA-2012-317297), and by national funds from FCT I.P.
through the strategic funding UID/BIA/04050/2013. Fábio Faria-Oliveira was supported
by a PhD scholarship (SFRH/BD/45368/2008) from FCT (Fundação para a
Ciência e a Tecnologia). We thank David Caceres and Montserrat MartinezGomariz
from the Unidad de Proteómica, Universidad Complutense de Madrid
– Parque Científico de Madrid, Spain for excellent technical assistance in the
successful implementation of all proteomics procedures including peptide
identification, and Joana Tulha from the CBMA, Universidade do Minho,
Portugal, for helping with the SDS-PAGE experiments, and the tedious and
laborious ECM extraction procedures. The mass spectrometry proteomics
data have been deposited to the ProteomeXchange Consortium, via the
PRIDE partner repository, with the dataset identifier PXD001133. We would
like to thank the PRIDE team for all the help and support during the submission
process.info:eu-repo/semantics/publishedVersio
A Hindbrain Inhibitory Microcircuit Mediates Vagally-Coordinated Glucose Regulation
Neurons in the brainstem dorsal vagal complex integrate neural and humoral signals to coordinate autonomic output to viscera that regulate a variety of physiological functions, but how this circuitry regulates metabolism is murky. We tested the hypothesis that premotor, GABAergic neurons in the nucleus tractus solitarius (NTS) form a hindbrain micro-circuit with preganglionic parasympathetic motorneurons of the dorsal motor nucleus of the vagus (DMV) that is capable of modulating systemic blood glucose concentration. In vitro, neuronal activation or inhibition using either excitatory or inhibitory designer receptor exclusively activated by designer drugs (DREADDs) constructs expressed in GABAergic NTS neurons increased or decreased, respectively, action potential firing of GABAergic NTS neurons and downstream synaptic inhibition of the DMV. In vivo, DREADD-mediated activation of GABAergic NTS neurons increased systemic blood glucose concentration, whereas DREADD-mediated silencing of these neurons was without effect. The DREADD-induced hyperglycemia was abolished by blocking peripheral muscarinic receptors, consistent with the hypothesis that altered parasympathetic drive mediated the response. This effect was paralleled by elevated serum glucagon and hepatic phosphoenolpyruvate carboxykinase 1 (PEPCK1) expression, without affecting insulin levels or muscle metabolism. Activity in a hindbrain inhibitory microcircuit is sufficient to modulate systemic glucose concentration, independent of insulin secretion or utilization
The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways
Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks
- …
